• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鈮微合金化高強鋼中NbC析出相的生成機理

    胡俊杰 任英 張立峰

    胡俊杰, 任英, 張立峰. 鈮微合金化高強鋼中NbC析出相的生成機理[J]. 工程科學學報, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001
    引用本文: 胡俊杰, 任英, 張立峰. 鈮微合金化高強鋼中NbC析出相的生成機理[J]. 工程科學學報, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001
    HU Junjie, REN Ying, ZHANG Lifeng. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001
    Citation: HU Junjie, REN Ying, ZHANG Lifeng. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001

    鈮微合金化高強鋼中NbC析出相的生成機理

    doi: 10.13374/j.issn2095-9389.2022.07.21.001
    基金項目: 國家自然科學基金資助項目(U22A20171)
    詳細信息
      通訊作者:

      任英, E-mail: yingren@ustb.edu.cn

      張立峰, E-mail: zhanglifeng@ncut.edu.cn

    • 中圖分類號: TG156.5

    Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel

    More Information
    • 摘要: 微合金化與熱處理工藝是提升鋼材性能最主要的兩種方法。本文以DH980高強鋼中NbC析出相為對象,研究了鈮含量分別為210 × 10–6、430 × 10–6和690 × 10–6和熱處理溫度分別為1000、1100、1200和1300 ℃的條件下,高強鋼中NbC析出相的析出行為。使用高溫硅鉬爐熔煉DH980連鑄坯并添加不同Nb含量進行鈮合金化,再將所得水冷樣置于硅鉬爐中完成不同溫度下的熱處理實驗,然后使用夾雜物自動掃描電鏡對實驗樣品進行夾雜物掃描、統計。經分析,鈮微合金化后的高強鋼中主要的夾雜物為Al2O3、MnS和NbC,其中,NbC析出相的尺寸范圍為0.7~6.0 μm,而1.0~2.0 μm尺寸的NbC居多。使用Factsage熱力學計算軟件計算NbC析出溫度及析出量,隨著鋼中鈮含量從210 × 10–6增加至690 × 10–6,NbC析出相的最高析出溫度逐漸升高,分別為1125、1200和1260 ℃,NbC析出率(NbC質量與所有夾雜物質量的比值)也逐漸從0.023%增加至0.047%、0.076%。MnS的析出溫度為1450 ℃,不隨Nb含量的變化而變化。鋼中NbC析出量隨著鈮含量的增加而增加,也隨著熱處理溫度的升高而增加。當熱處理溫度為1300 ℃時,NbC出現回溶現象,導致析出量減少。NbC尺寸主要與初始Nb含量、熱處理溫度、保溫時間有關,NbC尺寸會隨著Nb含量、熱處理溫度、保溫時間的提高而增加。本研究中建立了高強鋼中NbC析出動力學模型,預測了鋼中鈮含量、熱處理溫度、熱處理時間對NbC析出相尺寸的影響。

       

    • 圖  1  試驗流程圖. (a)熔煉實驗;(b)熱處理

      Figure  1.  Schematic of experiments: (a) smelting experiment; (b) heat treatment

      圖  2  不同Nb含量的未加熱處理樣品中夾雜物三元相圖. (a)210 × 10–6;(b)430 × 10–6;(c)690 × 10–6

      Figure  2.  Ternary phase diagram of inclusions in steel without heating with different Nb contents: (a) 210 × 10–6; (b) 430 × 10–6; (c) 690 × 10–6

      圖  3  典型夾雜物SEM圖和能譜分析. (a)Al2O3;(b)MnS;(c~d)NbC

      Figure  3.  SEM images and EDX analysis of typical inclusions: (a)Al2O3; (b) MnS; (c–d) NbC

      圖  4  Nb質量分數為210 × 10–6時在不同溫度下處理的樣品中夾雜物三元相圖. (a)1000 ℃;(b)1100 ℃;(c)1200 ℃;(d)1300 ℃

      Figure  4.  Ternary phase diagram of inclusions in steel at different heating temperature with 210 × 10–6 Nb: (a) 1000 ℃; (b) 1100 ℃; (c) 1200 ℃; (d) 1300 ℃

      圖  5  不同熱處理溫度下純NbC尺寸分布. (a)未經熱處理;(b)1000 ℃;(c)1100 ℃;(d)1200 ℃

      Figure  5.  Size distribution of pure NbC at different heating temperature: (a) before; (b) 1000 ℃; (c) 1100 ℃; (d) 1200 ℃

      圖  6  NbC面積分數隨Nb含量和熱處理溫度的變化

      Figure  6.  Relationship between area fraction of NbC and Nb content and heating temperature

      圖  7  不同Nb含量下各夾雜物、FCC、BCC、鋼液的生成情況. (a)210 × 10–6;(b)430 × 10–6;(c)690 × 10–6

      Figure  7.  Formation of inclusions, FCC, BCC, and liquid at different Nb content: (a)210 × 10–6; (b) 430 × 10–6; (c) 690 × 10–6

      圖  8  NbC析出相動力學計算模型示意圖

      Figure  8.  Schematic of the kinetic calculation model of NbC precipitates

      圖  9  鋼中NbC析出相的尺寸隨溫度的變化

      Figure  9.  Variation of NbC precipitate size in steel with heating temperature

      圖  10  不同Nb含量樣品中NbC析出相尺寸隨熱處理溫度、保溫時間的變化. (a)210 × 10–6;(b)430 × 10–6;(c)690 × 10–6

      Figure  10.  Relationship between the size of NbC precipitates in steel and heating temperature and holding time with different Nb content: (a) 210 × 10–6; (b) 430 × 10–6; (c) 690 × 10–6

      圖  11  NbC數量、尺寸隨熱處理溫度、Nb含量變化

      Figure  11.  Variation of amounts and NbC precipitate size in steel with heating temperature and Nb content

      表  1  鋼樣主要成分(質量分數)

      Table  1.   Main composition of steel samples %

      SampleCMnT.AlT.ST.NSiPCrNb
      10.2102.2000.8000.0030.0030.6000.0050.4000.021
      20.043
      30.069
      下載: 導出CSV

      表  2  夾雜物成分(質量分數)

      Table  2.   Composition of inclusion elements %

      COAlSiSFeMgCaMnPTiNNbMo
      3.416.248.60004.60000000
      下載: 導出CSV

      表  3  熱處理過程中C和Nb擴散系數和平衡質量分數

      Table  3.   Diffusion coefficients and equilibrium concentration of C and Nb during heat treatment process

      T/oCwNb,eq/%DNb/(10–15 m2·s–1)DC/(10–7 m2·s–1)
      9000.000.8282.05
      9500.000.9342.19
      10000.001.722.34
      10500.002.353.44
      11000.004.274.67
      11500.005.687.63
      12000.007.7314.5
      下載: 導出CSV

      表  4  熱處理過程中析出相動力學計算參數

      Table  4.   Calculation parameters of the kinetics of precipitates during heat treatment

      L0/μmMm/(kg·mol–1)MNbC/(kg·mol–1)ρm/(kg·m–3)ρNbC/(kg·m–3)
      0.670.0560.1057.64×1037.70×103
      下載: 導出CSV
      中文字幕在线观看
    • [1] Liu Q M, Feng J J. Development and current situation of advanced high-strength steel under the condition of automobile light weight. Steel Roll, 2020, 37(4): 65

      劉清梅, 封嬌潔. 汽車輕量化條件下先進高強鋼的發展及現狀. 軋鋼, 2020, 37(4):65
      [2] Wang H D, Yan J S. Present development and engineering innovation of advanced high strength steel. Metall Equip, 2021(5): 51

      王海東, 嚴江生. 淺談先進高強鋼發展現狀與工程創新. 冶金設備, 2021(5):51
      [3] Du Y F, Li W, Tian Y Q. Application progress of Nb, V and Ti microalloying in TRIP steel for automobile. Heat Treat Met, 2019, 44(8): 50

      杜一飛, 黎旺, 田亞強. Nb、V、Ti微合金化在汽車用TRIP鋼中的應用進展. 金屬熱處理, 2019, 44(8):50
      [4] Zhang C L, Shao Z H, Li J, et al. Application and development of niobium microalloying technology in medium and high carbon steel. Mater Rep, 2021, 35(5): 5102

      張朝磊, 邵洙浩, 李戩, 等. 鈮微合金化技術在中高碳鋼中的應用現狀與發展. 材料導報, 2021, 35(5):5102
      [5] Lu D, Li W F, Ren Y, et al. Transformation of non-metallic inclusions in solid steel during heating process. J Iron Steel Res, 2020, 32(12): 1021

      魯達, 李維福, 任英, 等. 固態鋼加熱過程中非金屬夾雜物轉變研究進展. 鋼鐵研究學報, 2020, 32(12):1021
      [6] Wu K. Mechanical properties analysis of high strength steel for building structure. Dev Guide Build Mater, 2021, 19(1): 119

      吳坤. 建筑結構用高強度鋼材力學性能分析. 建材發展導向(上), 2021, 19(1):119
      [7] Zhang L F. Non-Metallic Inclusions in Steel. Beijing: Metallurgical Industry Press, 2019

      張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
      [8] Liu C C, Zhang L F, Ren Y, et al. Review on effect of non-metallic inclusions on pitting corrosion resistance of stainless steel. J Iron Steel Res, 2021, 33(10): 1040

      劉城城, 張立峰, 任英, 等. 非金屬夾雜物對不銹鋼耐點蝕性能影響的綜述. 鋼鐵研究學報, 2021, 33(10):1040
      [9] Li M, Zhang L F, Luo Y, et al. Morphology of inclusions and precipitates in continuous casting slab of an oriented electrical steel. China Metall, 2018, 28(Sup 1): 95

      李明, 張立峰, 羅艷, 等. 取向硅鋼連鑄坯中夾雜物和析出相的形貌特征. 中國冶金, 2018, 28(增刊1): 95
      [10] Shi K W, Jiang D C, Zheng L N, et al. Precipitation control of NbC in medium carbon niobium microalloyed steel. Continuous Cast, 2020, 45(3): 77

      石可偉, 蔣棟初, 鄭力寧, 等. 中碳鈮微合金化鋼NbC的析出控制. 連鑄, 2020, 45(3):77
      [11] Bhattacharyya T, Singh S B, Das S, et al. Development and characterization of C–Mn–Al–Si–Nb TRIP aided steel. Mater Sci Eng A, 2011, 528(6): 2394 doi: 10.1016/j.msea.2010.11.054
      [12] Deng X T, Fu T L, Wang Z D, et al. Extending the boundaries of mechanical properties of Ti–Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. Met Mater Int, 2017, 23(1): 175 doi: 10.1007/s12540-017-6241-8
      [13] Esterl R, Sonnleitner M, Schnitzer R. Influences of thermomechanical treatment and Nb micro-alloying on the hardenability of ultra-high strength steels. Metall Mater Trans A, 2019, 50(7): 3238 doi: 10.1007/s11661-019-05235-8
      [14] Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int, 2004, 44(11): 1945 doi: 10.2355/isijinternational.44.1945
      [15] Suzuki H G, Nishimura S, Yamaguchi S. Characteristics of hot ductility in steels subjected to the melting and solidification. Trans Iron Steel Inst Jpn, 1982, 22(1): 48 doi: 10.2355/isijinternational1966.22.48
      [16] Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application. Mater Sci Eng A, 2013, 561: 394 doi: 10.1016/j.msea.2012.10.047
      [17] Jung J, Lee S J, Kim S. Effect of Ti additions on micro-alloyed Nb TRIP steel. Steel Res Int, 2011, 82(7): 857 doi: 10.1002/srin.201000273
      [18] Shanmugam S, Tanniru M, Misra R D K, et al. Microalloyed V–Nb–Ti and V steels Part 2–Precipitation behaviour during processing of structural beams. Mater Sci Technol, 2005, 21(2): 165 doi: 10.1179/174328405X18656
      [19] Sobral M, Mei P, Kestenbach H J. Effect of carbonitride particles formed in austenite on the strength of microalloyed steels. Mater Sci Eng A, 2003, 367(1): 317
      [20] DeArdo A J. Metallurgical basis for thermomechanical processing of microalloyed steels. Ironmak Steelmak, 2001, 28(2): 138 doi: 10.1179/030192301678055
      [21] Shibata, Tanaka, Kimura, et al. Composition change in oxide inclusions of stainless steel by heat treatment. Ironmak Steelmak, 2010, 37(7): 522 doi: 10.1179/030192310X12700328925903
      [22] Jandová D, Kasl J. Effect of heat treatment and microalloying on toughness of cast low carbon steel. Mater Sci Forum, 2005, 531(500-501): 489
      [23] Kheirandish S, Noorian A. Effect of niobium on microstructure of cast AISI H13 hot work tool steel. J Iron Steel Res Int, 2008, 15(4): 61 doi: 10.1016/S1006-706X(08)60145-4
      [24] Pang Q H, Guo J, Li W J, et al. Complex precipitation mechanism of Ti–Nb–V microalloyed bainitic base high strength steel. J Wuhan Univ Technol, 2019, 34(6): 1444 doi: 10.1007/s11595-019-2211-y
      [25] Hong S G, Jun H J, Kang K B, et al. Evolution of precipitates in the Nb–Ti–V microalloyed HSLA steels during reheating. Scr Mater, 2003, 48(8): 1201 doi: 10.1016/S1359-6462(02)00567-5
      [26] Saito G, Sakaguchi N, Ohno M, et al. Effects of fine precipitates on austenite grain refinement of micro-alloyed steel during cyclic heat treatment. ISIJ Int, 2019, 59(11): 2098 doi: 10.2355/isijinternational.ISIJINT-2019-153
      [27] Taniguchi T, Satoh N, Saito Y, et al. Investigation of compositional change of inclusions in martensitic stainless steel during heat treatment by newly developed analysis method. ISIJ Int, 2011, 51(12): 1957 doi: 10.2355/isijinternational.51.1957
      [28] Yang Z H, Chen B C. Discussion on the role of microalloyed elements Nb, V and Ti in steel. Gansu Metall, 2000, 22(4): 20

      楊作宏, 陳伯春. 談微合金元素Nb、V、Ti在鋼中的作用. 甘肅冶金, 2000, 22(4):20
      [29] Ren Y, Zhang L F. Effect of Al2O3–SiO2–MnO inclusions on precipitation of MnS in Si–Mn-killed 304 stainless steels. Ironmak Steelmak, 2019, 46(6): 558 doi: 10.1080/03019233.2018.1491170
      [30] Kurokawa S, Ruzzante J, Hey A M, et al. Diffusion of Nb in Fe and Fe alloys. Met Sci, 1983, 17: 433 doi: 10.1179/030634583790420628
      [31] Tibbetts G G. Diffusivity of carbon in iron and steels at high temperatures. J Appl Phys, 1980, 51(9): 4813 doi: 10.1063/1.328314
      [32] Fick A. Ueber diffusion. Ann Der Physik, 1855, 170(1): 59 doi: 10.1002/andp.18551700105
    • 加載中
    圖(11) / 表(4)
    計量
    • 文章訪問數:  332
    • HTML全文瀏覽量:  87
    • PDF下載量:  77
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-07-21
    • 網絡出版日期:  2023-01-12
    • 刊出日期:  2023-10-25

    目錄

      /

      返回文章
      返回