• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    廢鈦基催化劑與釩鈦磁鐵礦制備含鈦球團性能對比

    錢立新 陶家杰 范春龍 丁龍 龍紅明 楊濤 余正偉

    錢立新, 陶家杰, 范春龍, 丁龍, 龍紅明, 楊濤, 余正偉. 廢鈦基催化劑與釩鈦磁鐵礦制備含鈦球團性能對比[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.08.07.001
    引用本文: 錢立新, 陶家杰, 范春龍, 丁龍, 龍紅明, 楊濤, 余正偉. 廢鈦基催化劑與釩鈦磁鐵礦制備含鈦球團性能對比[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.08.07.001
    QIAN Lixin, TAO Jiajie, FAN Chunlong, DING Long, LONG Hongming, YANG Tao, YU Zhengwei. Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.08.07.001
    Citation: QIAN Lixin, TAO Jiajie, FAN Chunlong, DING Long, LONG Hongming, YANG Tao, YU Zhengwei. Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.08.07.001

    廢鈦基催化劑與釩鈦磁鐵礦制備含鈦球團性能對比

    doi: 10.13374/j.issn2095-9389.2022.08.07.001
    基金項目: 國家自然科學基金資助項目(52174290,52204332);安徽省自然科學基金杰出青年資助項目(2208085J19)
    詳細信息
      通訊作者:

      E-mail: yaflhm@126.com

    • 中圖分類號: FT52

    Analysis of the titanium-bearing pellets prepared by a waste titanium-based catalyst and vanadium titanomagnetite

    More Information
    • 摘要: 鋼鐵企業煙氣脫硝廢催化劑(危廢)產生量逐年增加,加強對此類廢催化劑的有效處置與利用已成為行業急需解決的關鍵共性難題。本研究首次提出了將廢催化劑添加到球團原料中制備含鈦球團利用的新路徑。將含廢催化劑球團和市場普通含鈦球團的制備過程及冶金性能進行對比研究。結果表明:球團原料中添加質量分數5.0%的廢催化劑可以顯著提高生球綜合性能指標,且明顯優于以釩鈦磁鐵礦制備的普通含鈦球團。球團焙燒后,含廢催化劑球團平均抗壓強度為3083 N,高于普通含鈦球團的2630 N含廢催化劑球團固結機理表明,廢催化劑中TiO2與鐵氧化物反應形成Fe2TiO5相粘結,部分未反應TiO2會降低球團抗壓強度。兩種含鈦球團冶金性能與普通氧化球團基本相同,說明含廢催化劑球團可以用于高爐護爐冶煉使用。本研究有望為鋼鐵企業煙氣脫硝產生的廢催化劑在企業內部資源化利用提供新思路。

       

    • 圖  1  廢催化劑宏觀結構及微觀形貌圖. (a)廢催化劑預處理過程;(b) 廢催化劑XRD圖譜;(c) 廢催化劑微觀形貌

      Figure  1.  Macrostructure and micromorphology of the waste catalyst: (a) pretreatment process of the waste catalyst; (b) XRD pattern of the waste catalyst; (c) micromorphology of the waste catalyst

      圖  2  不同生球團的落下強度和平均抗壓強度對比

      Figure  2.  Drop number and average compressive strength of different green pellets

      Pellet-1— ordinary oxidized pellets; Pellet-2— pellets containing waste catalysts;Pellet-3— ordinary titanium-bearing pellets

      圖  3  不同生球團爆裂溫度和干球平均抗壓強度對比

      Figure  3.  Burst temperature of green pellets and average compressive strength of dry pellets

      圖  4  不同球團預熱和焙燒后抗壓強度對比

      Figure  4.  Compressive strength of preheated and roasted pellets

      圖  5  不同球團焙燒后氣孔面積

      Figure  5.  Pore area of different roasted pellets

      圖  6  不同預熱球團XRD圖譜

      Figure  6.  XRD patterns of different preheated pellets

      圖  7  不同焙燒球團XRD圖譜

      Figure  7.  XRD patterns of different roasted pellets

      圖  8  不同焙燒球團礦相結構. (a)普通氧化球團; (b)普通含鈦球團; (c)含廢催化劑球團; (d)圖(c)中局部顆粒放大圖

      Figure  8.  Microstructure of different roasted pellets: (a) oxide pellet; (b) titanium pellet; (c) waste catalyst pellet; (d) enlargement of a local area in photograph (c)

      圖  9  含廢催化劑球團主要物相SEM圖. (a)廢催化劑顆粒;(b)照片(a)中局部放大圖

      Figure  9.  SEM image of the pellet containing waste catalyst: (a) waste catalyst particle; (b) enlargement of a local area in photograph (a)

      表  1  含鐵原料主要化學成分(質量分數)

      Table  1.   Main chemical compositions of iron-containing raw materials %

      Raw materialTFeFeOSiO2CaOMgOAl2O3TiO2V2O5K2ONa2O
      MCa65.7526.506.570.300.480.84
      VTMb53.6230.913.730.982.963.3512.170.53
      Bentonite2.2169.432.502.2117.402.482.77
      MC a: Magnetite concentrate; VTM b: Vanadium titanomagnetite.
      下載: 導出CSV

      表  2  含鐵原料粒度組成(質量分數)

      Table  2.   Particle size composition of iron-containing raw materials %

      Raw materialSize composition
      +0.074 mm+0.045–0.074 mm?0.074 mm?0.045 mm
      MC6.413.393.680.3
      VTM32.829.167.238.1
      下載: 導出CSV

      表  3  廢催化劑及堵塞物飛灰主要化學成分(質量分數)

      Table  3.   Main chemical composition of the waste catalyst and fly ash % %

      TiO2WO3SiO2CaOAl2O3V2O5Fe2O3P2O5Na2OK2OSx
      87.274.663.641.320.870.520.070.150.120.090.43
      下載: 導出CSV

      表  4  不同球團礦RSI指數和密度

      Table  4.   RSI index and density of different pellets

      SchemePre-reduction volume/cm3Reduced volume/cm3RSI/%Pre-reduction mass/gPellet density/(g·cm?3)
      Pellet-122.124.29.687.243.95
      Pellet-223.525.69.185.753.65
      Pellet-322.824.68.187.103.82
      下載: 導出CSV

      表  5  不同球團礦RI和RDI性能

      Table  5.   RI and RDI performance of different pellets

      SchemeMass fraction of TFe/%Mass fraction of FeO/%RI/%RDI+6.3/%RDI+3.15/%RDI-0.5/%
      Pellet-164.380.7561.792.296.31.5
      Pellet-261.071.7963.396.697.81.2
      Pellet-360.031.0856.498.798.71.7
      下載: 導出CSV

      表  6  不同球團礦熔滴性能

      Table  6.   Meltdown properties of different roasted pellets

      SchemeTa/℃Ts/℃ΔTsa/℃Tm/℃Td/℃ΔTdm/℃
      Pellet-1115711984112051331126
      Pellet-2116312094712111341130
      Pellet-3118812284012381339101
      下載: 導出CSV

      表  7  含廢催化劑球團主要物相EDS結果

      Table  7.   EDS results of the pellets containing waste catalyst

      SchemeMass fraction/%
      OTiFeVWSi
      Point 135.9941.273.940.085.71
      Point 236.702.9760.32
      Point 331.570.5967.84
      Point 444.4030.6620.070.402.981.49
      下載: 導出CSV
      中文字幕在线观看
    • [1] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061

      于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
      [2] Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865

      龍紅明, 丁龍, 錢立新, 等. 燒結煙氣中NOx和二噁英的減排現狀及發展趨勢. 化工進展, 2022, 41(7):3865
      [3] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

      邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
      [4] Wei J K, Zhang Q, Li Y G. Cause analysis of deactivation of medium temperature SCR denitration catalyst in sintering machine. Hebei Metall, 2021(12): 75

      韋晉科, 張強, 李永光. 燒結機中溫SCR脫硝催化劑失活原因分析. 河北冶金, 2021(12):75
      [5] Ding L, Qian L X, Yang T, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst. Chin J Eng, 2021, 43(8): 1125

      丁龍, 錢立新, 楊濤, 等. 燒結煙氣中Zn對V2O5-WO3/TiO2催化劑脫除NOx和二噁英性能的影響. 工程科學學報, 2021, 43(8):1125
      [6] Hou X J, Zhang X M, Cheng W B, et al. Research on disposal methods of spent vanadium-titanium-based catalysts. Chem Ind Eng Prog, 2021, 40(10): 5313 doi: 10.16085/j.issn.1000-6613.2021-0568

      侯學軍, 章小明, 程文博, 等. 廢釩鈦基SCR催化劑的處置方法研究進展. 化工進展, 2021, 40(10):5313 doi: 10.16085/j.issn.1000-6613.2021-0568
      [7] Long H M, Ding L, Tao J J, et al. Analysis on resource utilization of waste vanadium-tungsten-titanium catalyst for denitration of sintering flue gas. Iron Steel, 2022, 57(7): 162

      龍紅明, 丁龍, 陶家杰, 等. 燒結煙氣脫硝廢棄釩鎢鈦催化劑資源化利用途徑分析. 鋼鐵, 2022, 57(7):162
      [8] Li M, Liu B, Wang X R, et al. A promising approach to recover a spent SCR catalyst: Deactivation by arsenic and alkaline metals and catalyst regeneration. Chem Eng J, 2018, 342: 1 doi: 10.1016/j.cej.2017.12.132
      [9] Liu X Y, Jia Y Y, Tang Z H, et al. Research progress on regeneration of waste SCR denitration catalyst. Appl Chem Ind, 2020, 49(7): 1839 doi: 10.3969/j.issn.1671-3206.2020.07.052

      劉興譽, 賈媛媛, 唐中華, 等. 廢舊SCR脫硝催化劑再生研究進展. 應用化工, 2020, 49(7):1839 doi: 10.3969/j.issn.1671-3206.2020.07.052
      [10] He C, Wang L L, Yang X N, et al. Effects of spent SCR catalyst blending on the de-NOx activity of new catalyst. Chem Ind Eng Prog, 2018, 37(2): 581 doi: 10.16085/j.issn.1000-6613.2017-0873

      何川, 王樂樂, 楊曉寧, 等. 廢棄選擇性催化還原催化劑混摻對新催化劑脫硝性能的影響. 化工進展, 2018, 37(2):581 doi: 10.16085/j.issn.1000-6613.2017-0873
      [11] Erust C, Akcil A, Bedelova Z, et al. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests. Waste Manag, 2016, 49: 455 doi: 10.1016/j.wasman.2015.12.002
      [12] Liu L J, Wang L L, Su S, et al. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent. Fuel, 2019, 243: 406 doi: 10.1016/j.fuel.2019.01.160
      [13] Zhou H, Guo X T, Zhou M X. Influence of different additives on harmless melting treatment of waste SCR catalysts. J Chin Soc Power Eng, 2017, 37(12): 999 doi: 10.3969/j.issn.1674-7607.2017.12.009

      周昊, 國旭濤, 周明熙. 不同添加劑對廢棄SCR催化劑熔融無害化處理的影響. 動力工程學報, 2017, 37(12):999 doi: 10.3969/j.issn.1674-7607.2017.12.009
      [14] Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954
      [15] Qian L X, Yang T, Long H M, et al. Recycling of waste V2O5–WO3/TiO2 catalysts in the iron ore sintering process via a preballing approach. ACS Sustainable Chem Eng, 2021, 9(48): 16373 doi: 10.1021/acssuschemeng.1c06271
      [16] Liu D H, Wang X Z, Zhang J L, et al. Application status and investigation of titanium-containing materials in blast furnace protection process. China Metall, 2018, 28(2): 1

      劉東輝, 王曉哲, 張建良, 等. 高爐護爐用含鈦物料應用現狀及調研分析. 中國冶金, 2018, 28(2):1
      [17] Wu J L, Chen H, Sun J, et al. Metallurgical properties and furnace protection practice of different titanium-bearing burdens. Ironmak Steelmak, 2020, 47(10): 1161 doi: 10.1080/03019233.2019.1678845
      [18] Sun J, Wang S, Chu M S, et al. Titanium distribution between blast furnace slag and iron for blast furnace linings protection. Ironmak Steelmak, 2020, 47(5): 545 doi: 10.1080/03019233.2018.1557847
      [19] Zhao H, Bennici S, Shen J, et al. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42? catalysts. Appl Catal A Gen, 2009, 356(2): 121 doi: 10.1016/j.apcata.2008.12.037
      [20] Forsmo S P E, Samskog P O, Bj?rkman B M T. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness. Powder Technol, 2008, 181(3): 321 doi: 10.1016/j.powtec.2007.05.023
      [21] Chen X L, Huang Y S, Fan X H, et al. Oxidation roasting behavior and concretion properties of vanadium-titanium magnetite pellet. J Central South Univ (Sci Technol), 2016, 47(2): 359

      陳許玲, 黃云松, 范曉慧, 等. 釩鈦磁鐵礦球團氧化焙燒行為和固結特性. 中南大學學報(自然科學版), 2016, 47(2):359
      [22] Gan M, Sun Y F, Fan X H, et al. Preparing high-quality vanadium titano-magnetite pellets for large-scale blast furnaces as ironmaking burden. Ironmak Steelmak, 2020, 47(2): 130 doi: 10.1080/03019233.2018.1492500
      [23] Chen X L, Gan M, Fan X H, et al. Concretion properties of organic-binder oxidate pellets and strengthen measures. J Central South Univ (Sci Technol), 2009, 40(3): 550

      陳許玲, 甘敏, 范曉慧, 等. 有機粘結劑氧化球團固結特性及強化措施. 中南大學學報(自然科學版), 2009, 40(3):550
      [24] Cheng G J, Xing Z X, Yang H, et al. Effects of high proportion unground sea sand ore on the preparation process and reduction performance of oxidized pellets. Minerals, 2021, 11(1): 87 doi: 10.3390/min11010087
      [25] Cristallo G, Roncari E, Rinaldo A, et al. Study of anatase–rutile transition phase in monolithic catalyst V2O5/TiO2 and V2O5–WO3/TiO2. Appl Catal A Gen, 2001, 209(1-2): 249 doi: 10.1016/S0926-860X(00)00773-0
      [26] Nova I, Dall’Acqua L, Lietti L, et al. Study of thermal deactivation of a de-NOx commercial catalyst. Appl Catal B Environ, 2001, 35(1): 31 doi: 10.1016/S0926-3373(01)00229-6
    • 加載中
    圖(9) / 表(7)
    計量
    • 文章訪問數:  196
    • HTML全文瀏覽量:  21
    • PDF下載量:  31
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-08-06
    • 網絡出版日期:  2022-09-29

    目錄

      /

      返回文章
      返回