• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于NSCB方法的凍結紅砂巖動態斷裂特性試驗

    方士正 楊仁樹 李煒煜 李永亮 楊陽

    方士正, 楊仁樹, 李煒煜, 李永亮, 楊陽. 基于NSCB方法的凍結紅砂巖動態斷裂特性試驗[J]. 工程科學學報, 2023, 45(10): 1704-1715. doi: 10.13374/j.issn2095-9389.2022.08.15.005
    引用本文: 方士正, 楊仁樹, 李煒煜, 李永亮, 楊陽. 基于NSCB方法的凍結紅砂巖動態斷裂特性試驗[J]. 工程科學學報, 2023, 45(10): 1704-1715. doi: 10.13374/j.issn2095-9389.2022.08.15.005
    FANG Shizheng, YANG Renshu, LI Weiyu, LI Yongliang, YANG Yang. Investigation of dynamic fracture characteristics of frozen red sandstone using notched semi-circular bend method[J]. Chinese Journal of Engineering, 2023, 45(10): 1704-1715. doi: 10.13374/j.issn2095-9389.2022.08.15.005
    Citation: FANG Shizheng, YANG Renshu, LI Weiyu, LI Yongliang, YANG Yang. Investigation of dynamic fracture characteristics of frozen red sandstone using notched semi-circular bend method[J]. Chinese Journal of Engineering, 2023, 45(10): 1704-1715. doi: 10.13374/j.issn2095-9389.2022.08.15.005

    基于NSCB方法的凍結紅砂巖動態斷裂特性試驗

    doi: 10.13374/j.issn2095-9389.2022.08.15.005
    基金項目: 國家自然科學基金重點資助項目(51934001)
    詳細信息
      通訊作者:

      E-mail: wylcumtb@163.com

    • 中圖分類號: TD313

    Investigation of dynamic fracture characteristics of frozen red sandstone using notched semi-circular bend method

    More Information
    • 摘要: 采用紅砂巖制作中心直裂紋半圓盤彎曲試樣(Notched semi-circular bend, NSCB),設置不同的負溫溫度對巖石試樣預處理,隨后利用改進后的分離式霍普金森桿(SHPB)實驗系統開展動態試驗。結果表明:巖石的斷裂韌度存在明顯的加載率效應,斷裂韌度試驗值隨加載率的增加近似呈指數型增大;當加載率一定時,巖石斷裂韌度由常溫進入負溫后先緩慢后快速增加,在–20 ℃時達到最大值,隨著溫度進一步降低,巖石斷裂韌度快速減小。進一步對巖石破裂過程分析發現,不同溫度下巖石的斷裂過程基本一致,且裂紋擴展速度受溫度影響較小。基于巖石斷面的掃描電子顯微鏡結果分析巖石斷裂模式為:負溫下紅砂巖的斷裂以沿晶破裂和膠結物的撕裂為主,伴有少量的穿晶破裂現象,同時當溫度降低至–25 ℃時,巖石內部微裂隙數量明顯增多,說明負溫對巖石具有劣化作用。最后探討了溫度對巖石內部結構的影響機制,對分析巖石斷裂特性的低溫效應具有一定參考意義。

       

    • 圖  1  試樣尺寸示意圖

      Figure  1.  Dimension of samples

      圖  2  部分試樣照片

      Figure  2.  Photo of some specimens

      圖  3  改進后的霍普金森桿示意圖

      Figure  3.  Schematic of the improved SHPB system

      圖  4  典型的動態平衡曲線

      Figure  4.  Typical dynamic stress balance curve

      圖  5  加載率確定方法

      Figure  5.  Determination method of loading rate

      圖  6  ?15 ℃時巖石應力強度因子時程曲線

      Figure  6.  History curves of rock fracture stress intensity factor at ?15 ℃

      圖  7  不同溫度下巖石的加載率及動態斷裂韌度

      Figure  7.  Loading rate and dynamic fracture toughness of rock at different temperatures

      圖  8  動態斷裂韌度隨溫度的變化趨勢. (a) 三維擬合圖;(b) 斷面提取曲線;(c) 實測數據

      Figure  8.  Trends of dynamic fracture toughness with temperature: (a) 3D fitting surface; (b) sectional maps extracted from fitting surface; (c) measured curves

      圖  9  不同溫度下巖石試樣的漸進破裂過程

      Figure  9.  Dynamic failure processes of NSCB specimen at different temperature

      圖  10  斷裂應力強度因子時程曲線階段劃分

      Figure  10.  Division of stress intensity factor history curve

      圖  11  典型試樣裂紋擴展長度和速度

      Figure  11.  Crack length and crack propagation velocity of the typical specimen

      圖  12  不同溫度下巖石裂紋擴展速度

      Figure  12.  Rock crack propagation velocity at different temperature

      圖  13  典型試樣測試后破壞形態. (a) 25 ℃;(b) –5 ℃;(c) –10 ℃;(d) –15 ℃;(e) –20 ℃;(f) –25 ℃

      Figure  13.  Typical tested NSCB specimens: (a) 25 ℃; (b) –5 ℃; (c) –10 ℃; (d) –15 ℃; (e) –20 ℃; (f) –25 ℃

      圖  14  常溫時典型破壞試樣的SEM圖. (a)裂紋擴展方向;(b)少量穿晶破壞;(c)顆粒剝離

      Figure  14.  SEM images of the typical failure sample at room temperature (The arrow indicates the direction of crack propagation): (a) crack extension direction; (b) small amount of TG damage; (c) particle peeling

      圖  15  低倍率下典型破壞試樣的SEM圖. (a) –5 ℃; (b) –10 ℃; (c) –15 ℃; (d) –20 ℃; (e) –25 ℃

      Figure  15.  SEM images of typical failure specimens at low magnification: (a) –5 ℃; (b) –10 ℃; (c) –15 ℃; (d) –20 ℃; (e) –25 ℃

      圖  16  高倍率下典型破壞試樣的SEM圖. (a) –5 ℃; (b) –10 ℃; (c) –15 ℃; (d) –20 ℃; (e) –25 ℃

      Figure  16.  SEM images of typical failure specimens at high magnification: (a) –5 ℃; (b) –10 ℃; (c) –15 ℃; (d) –20 ℃; (e) –25 ℃

      圖  17  基于孔隙連通性的孔隙分類[49]

      Figure  17.  Pore space classification in accordance with connectivity

      圖  18  端閉孔內凍脹力導致巖石破壞示意圖

      Figure  18.  Schematic of rock damage due to frost heaving pressure at the end closure hole

      表  1  加載率與動態斷裂韌度擬合曲線參數

      Table  1.   Loading rate and dynamic fracture toughness fitting curve parameters

      Temperature /℃abcR2
      2513.54–8.7412.740.8891
      –510.97–7.58178.820.9504
      –1011.83–8.52192.340.9905
      –1512.11–10.39135.680.9582
      –2016.98–13.92261.680.9533
      –2513.26–10.01192.090.9461
      Notes: R2 represents correction of fitting.
      下載: 導出CSV
      中文字幕在线观看
    • [1] Kawamura H, Hatano T, Kato N, et al. Statistical physics of fracture, friction, and earthquakes. Rev Mod Phys, 2012, 84(2): 839 doi: 10.1103/RevModPhys.84.839
      [2] Zhang K, Cao P, Meng J J, et al. Modeling the progressive failure of jointed rock slope using fracture mechanics and the strength reduction method. Rock Mech Rock Eng, 2015, 48(2): 771 doi: 10.1007/s00603-014-0605-x
      [3] Brideau M A, Yan M, Stead D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology, 2009, 103(1): 30 doi: 10.1016/j.geomorph.2008.04.010
      [4] Ding C X, Yang R S, Chen C, et al. Space-time effect of blasting stress wave and blasting gas on rock fracture based on a cavity charge structure. Int J Rock Mech Min Sci, 2022, 160: 105238 doi: 10.1016/j.ijrmms.2022.105238
      [5] Yan Z L, Dai F, Zhu J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression. Rock Mech Rock Eng, 2021, 54(9): 5117 doi: 10.1007/s00603-021-02564-2
      [6] Guan J F, Yuan P, Li L L, et al. Rock fracture with statistical determination of fictitious crack growth. Theor Appl Fract Mech, 2021, 112: 102895 doi: 10.1016/j.tafmec.2021.102895
      [7] Saboori B, Ayatollahi M R. A novel test configuration designed for investigating mixed mode II/III fracture. Eng Fract Mech, 2018, 197: 248 doi: 10.1016/j.engfracmech.2018.04.048
      [8] Asem P, Wang X R, Hu C, et al. On tensile fracture of a brittle rock. Int J Rock Mech Min Sci, 2021, 144: 104823 doi: 10.1016/j.ijrmms.2021.104823
      [9] Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci, 2007, 44(5): 739 doi: 10.1016/j.ijrmms.2006.11.006
      [10] Wang Q Z, Yang J R, Zhang C G, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental–numerical–analytical method. Eng Fract Mech, 2015, 141: 78 doi: 10.1016/j.engfracmech.2015.04.025
      [11] Gao G, Yao W, Xia K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng Fract Mech, 2015, 138: 146 doi: 10.1016/j.engfracmech.2015.02.021
      [12] Zuo J P, Wei X, Pei J L, et al. Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system. J Rock Mech Geotech Eng, 2015, 7(5): 593 doi: 10.1016/j.jrmge.2015.06.009
      [13] Chen R, Li K, Xia K W, et al. Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method. Rock Mech Rock Eng, 2016, 49(10): 3865 doi: 10.1007/s00603-016-0958-4
      [14] Zhou Z L, Cai X, Ma D, et al. Water saturation effects on dynamic fracture behavior of sandstone. Int J Rock Mech Min Sci, 2019, 114: 46 doi: 10.1016/j.ijrmms.2018.12.014
      [15] Tian W L, Yang S Q, Xie L X, et al. Cracking behavior of three types granite with different grain size containing two non-coplanar fissures under uniaxial compression. Arch Civ Mech Eng, 2018, 18(4): 1580 doi: 10.1016/j.acme.2018.06.001
      [16] Leite J P B, Slowik V, Apel J. Computational model of mesoscopic structure of concrete for simulation of fracture processes. Comput Struct, 2007, 85(17-18): 1293 doi: 10.1016/j.compstruc.2006.08.086
      [17] Xu Y, Dai F, Xu N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng, 2016, 49(3): 731 doi: 10.1007/s00603-015-0787-x
      [18] Li X F, Zhang Q B, Li H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mech Rock Eng, 2018, 51(12): 3785 doi: 10.1007/s00603-018-1566-2
      [19] Mahanta B, Singh T N, Ranjith P G. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol, 2016, 210: 103 doi: 10.1016/j.enggeo.2016.06.008
      [20] Zhang Z X, Yu J, Kou S Q, et al. Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min Sci, 2001, 38(2): 211 doi: 10.1016/S1365-1609(00)00071-X
      [21] Talukdar M, Roy D G, Singh T. Correlating mode-I fracture toughness and mechanical properties of heat-treated crystalline rocks. J Rock Mech Geotech Eng, 2018, 10(1): 91 doi: 10.1016/j.jrmge.2017.09.009
      [22] Yin T B, Li X B, Xia K W, et al. Effect of thermal treatment on the dynamic fracture toughness of laurentian granite. Rock Mech Rock Eng, 2012, 45(6): 1087 doi: 10.1007/s00603-012-0240-3
      [23] Feng G, Kang Y, Meng T, et al. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock Mech Rock Eng, 2017, 50(8): 2007 doi: 10.1007/s00603-017-1226-y
      [24] Zuo J P, Wang J T, Sun Y J, et al. Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China. Eng Fract Mech, 2017, 182: 425 doi: 10.1016/j.engfracmech.2017.04.043
      [25] Chen L, Mao X B, Yang S L, et al. Experimental investigation on dynamic fracture mechanism and energy evolution of saturated yellow sandstone under different freeze-thaw temperatures. Adv Civ Eng, 2019, 2019: 1
      [26] Song Y J, Tan H, Yang H M, et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography. Eng Geol, 2021, 294: 106370 doi: 10.1016/j.enggeo.2021.106370
      [27] Walder J, Hallet B. A theoretical model of the fracture of rock due to freezing. Geol Soc Am Bull, 1985, 96(3): 336 doi: 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2
      [28] Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions. Science, 2006, 314(5802): 1127 doi: 10.1126/science.1132127
      [29] Jia H L, Xiang W, Tan L, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone. Chin J Rock Mech Eng, 2016, 35(5): 879

      賈海梁, 項偉, 譚龍, 等. 砂巖凍融損傷機制的理論分析和試驗驗證. 巖石力學與工程學報, 2016, 35(5):879
      [30] Weng L, Wu Z J, Liu Q S. Dynamic mechanical properties of dry and water-saturated siltstones under sub-zero temperatures. Rock Mech Rock Eng, 2020, 53(10): 4381 doi: 10.1007/s00603-019-02039-5
      [31] Yang Y, Yang R S. “Frostbite effect” of red sandstone under high strain rates. Chin J Eng, 2019, 41(10): 1249

      楊陽, 楊仁樹. 高應變率下紅砂巖“凍傷效應”. 工程科學學報, 2019, 41(10):1249
      [32] Zhou Y X, Xia K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci, 2012, 49: 105 doi: 10.1016/j.ijrmms.2011.10.004
      [33] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech, 2002, 42: 93 doi: 10.1007/BF02411056
      [34] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech, 2009, 76(9): 1268 doi: 10.1016/j.engfracmech.2009.02.001
      [35] Zhao Y X, Sun, Song H H, et al. Crack propagation law of mode Ⅰ dynamic fracture of coal: Experiment and numerical simulation. J China Coal Soc, 2020, 45(12): 3961 doi: 10.13225/j.cnki.jccs.2019.1347

      趙毅鑫, 孫荘, 宋紅華, 等. 煤Ⅰ型動態斷裂裂紋擴展規律試驗與數值模擬研究. 煤炭學報, 2020, 45(12):3961 doi: 10.13225/j.cnki.jccs.2019.1347
      [36] Zhao Y X, Gong S, Hao X J, et al. Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments. Eng Fract Mech, 2017, 178: 375 doi: 10.1016/j.engfracmech.2017.03.011
      [37] Liu R F, Zhu Z M, Li M, et al. Initiation and propagation of mode Ⅰ crack under blasting. Chin J Rock Mech Eng, 2018, 37(2): 392 doi: 10.13722/j.cnki.jrme.2017.1126

      劉瑞峰, 朱哲明, 李盟, 等. 爆炸載荷下Ⅰ型裂紋的起裂及擴展規律研究. 巖石力學與工程學報, 2018, 37(2):392 doi: 10.13722/j.cnki.jrme.2017.1126
      [38] Dai F, Xia K, Zheng H, et al. Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech, 2011, 78(15): 2633 doi: 10.1016/j.engfracmech.2011.06.022
      [39] Yin Z Q, Xie G X, Hu Z X, et al. Investigation on fracture mechanism of coal rock on three-point bending tests under different gas pressures. J China Coal Soc, 2016, 41(2): 424 doi: 10.13225/j.cnki.jccs.2015.0598

      殷志強, 謝廣祥, 胡祖祥, 等. 不同瓦斯壓力下煤巖三點彎曲斷裂特性研究. 煤炭學報, 2016, 41(2):424 doi: 10.13225/j.cnki.jccs.2015.0598
      [40] Zuo J P, Wang X S, Mao D Q. SEM in situ study on the effect of offset-notch on basalt cracking behavior under three-point bending load. Eng Fract Mech, 2014, 131: 504 doi: 10.1016/j.engfracmech.2014.09.006
      [41] Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z
      [42] Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: Fracture characteristics and energy partitioning. Int J Rock Mech Min Sci, 2000, 37(5): 745 doi: 10.1016/S1365-1609(00)00008-3
      [43] Wang P, Xu J Y, Liu S H, et al. Dynamic mechanical properties and deterioration of red-sandstone subjected to repeated thermal shocks. Eng Geol, 2016, 212: 44 doi: 10.1016/j.enggeo.2016.07.015
      [44] Scherer G W. Crystallization in pores. Cement Concrete Res, 1999, 29(8): 1347 doi: 10.1016/S0008-8846(99)00002-2
      [45] Wang P, Xu J Y, Fang X Y, et al. Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering. Cold Reg Sci Technol, 2017, 143: 13 doi: 10.1016/j.coldregions.2017.07.002
      [46] Weng L, Wu Z J, Liu Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures. Eng Fract Mech, 2019, 220: 106659 doi: 10.1016/j.engfracmech.2019.106659
      [47] McGreevy J P, Whalley W B. Rock moisture content and frost weathering under natural and experimental conditions: A comparative discussion. Arct Alp Res, 1985, 17(3): 337 doi: 10.2307/1551022
      [48] Ruedrich J, Siegesmund S. Fabric Dependence of Length Change Behaviour Induced by Ice Crystallisation in the Pore Space of Natural Building Stones. London: Taylor and Francis Group, 2006
      [49] Ashworth E N, Abeles F B. Freezing behavior of water in small pores and the possible role in the freezing of plant tissues. Plant Physiol, 1984, 76(1): 201 doi: 10.1104/pp.76.1.201
      [50] Zhang J K, Liu D, Ma Y J, et al. Water-rock mechanism of weakly consolidated sandstone: A case study of Qingyang north grottoes. J Northeast Univ, 2022, 43(7): 1019 doi: 10.12068/j.issn.1005-3026.2022.07.015

      張景科, 劉盾, 馬雨君, 等. 弱膠結砂巖水巖作用機制——以慶陽北石窟為例. 東北大學學報(自然科學版), 2022, 43(7):1019 doi: 10.12068/j.issn.1005-3026.2022.07.015
      [51] Zhou Z L, Cai X, Zhao Y, et al. Strength characteristics of dry and saturated rock at different strain rates. Trans Nonferrous Met Soc China, 2016, 26(7): 1919 doi: 10.1016/S1003-6326(16)64314-5
    • 加載中
    圖(18) / 表(1)
    計量
    • 文章訪問數:  406
    • HTML全文瀏覽量:  90
    • PDF下載量:  71
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-08-15
    • 網絡出版日期:  2022-10-12
    • 刊出日期:  2023-10-25

    目錄

      /

      返回文章
      返回