• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    專家知識增強的機器學習建模在高強高導銅合金開發中的應用

    苗海賓 向朝建 劉勝楠 黃東男 婁花芬

    苗海賓, 向朝建, 劉勝楠, 黃東男, 婁花芬. 專家知識增強的機器學習建模在高強高導銅合金開發中的應用[J]. 工程科學學報, 2023, 45(11): 1908-1917. doi: 10.13374/j.issn2095-9389.2022.09.19.002
    引用本文: 苗海賓, 向朝建, 劉勝楠, 黃東男, 婁花芬. 專家知識增強的機器學習建模在高強高導銅合金開發中的應用[J]. 工程科學學報, 2023, 45(11): 1908-1917. doi: 10.13374/j.issn2095-9389.2022.09.19.002
    MIAO Haibin, XIANG Chaojian, LIU Shengnan, HUANG Dongnan, LOU Huafen. Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development[J]. Chinese Journal of Engineering, 2023, 45(11): 1908-1917. doi: 10.13374/j.issn2095-9389.2022.09.19.002
    Citation: MIAO Haibin, XIANG Chaojian, LIU Shengnan, HUANG Dongnan, LOU Huafen. Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development[J]. Chinese Journal of Engineering, 2023, 45(11): 1908-1917. doi: 10.13374/j.issn2095-9389.2022.09.19.002

    專家知識增強的機器學習建模在高強高導銅合金開發中的應用

    doi: 10.13374/j.issn2095-9389.2022.09.19.002
    基金項目: 北京市科技計劃資助項目(Z191100004619010, Z201100004520023)
    詳細信息
      通訊作者:

      E-mail: louhuafen@cmari.com

    • 中圖分類號: TG146.11

    Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development

    More Information
    • 摘要: 材料領域數據具有小樣本、噪聲大、維度高、關系復雜、專家知識豐富的特點. 利用專家知識增強機器學習建模效果具有必要性和可行性. 本文通過計算自變量與因變量之間的秩相關系數,來定量描述成分狀態因素與性能之間單調關系的強弱. 在模型訓練過程中,將秩相關系數加入到神經網絡損失函數,實時評估模型輸出與專家知識的相符程度,得到了專家知識增強的機器學習模型. 對訓練過程分析后發現,模型輸出的合理性有顯著提升,模型的輸入輸出規律與專家知識的相符程度達到了0.98以上(1.0為完全相符). 基于所建模型,采用遺傳算法進行了關于強度和導電率的多目標優化,找到了滿足帕累托最優的高強高導銅合金成分并開展了實驗驗證. 實驗結果表明,強度在高達637 MPa的同時,導電率仍能保持在77.5% IACS(國際退火銅標準)的水平;導電率高達80.2% IACS的同時,強度仍能保持在600 MPa的水平. 強度和導電率的預測值與實際值誤差在5%以內.

       

    • 圖  1  不同網絡結構下強度和導電率模型評分. (a)強度模型;(b)導電率模型

      Figure  1.  Strength and conductivity model scores for different network structures: (a) strength model; (b) conductivity model

      圖  2  專家知識增強的模型訓練策略

      Figure  2.  Training strategy of expert-augmented model

      圖  3  專家知識增強的模型迭代過程. (a)強度模型;(b)導電率模型

      Figure  3.  Iterative process of expert-augmented model: (a) strength model; (b) conductivity model

      圖  4  模型在測試集上的效果. (a)強度模型;(b)導電率模型

      Figure  4.  Performance of the model on the test dataset: (a) strength model; (b) conductivity model

      圖  5  關于強度和導電率的多目標優化結果

      Figure  5.  Results of multiobjective optimization between strength and conductivity

      圖  6  三種合金樣品的應力–應變曲線

      Figure  6.  Stress–strain curves of three alloy samples

      圖  7  不同成分下樣品性能實驗值與預測值對比

      Figure  7.  Comparison of the experimental and predicted values of sample performance at different compositions

      圖  8  1#合金組織演變規律. (a)鑄態;(b)成品態

      Figure  8.  Microstructure evolution of sample 1#: (a) as-cast condition; (b) finished product

      圖  9  2#合金組織演變規律. (a)鑄態;(b)成品態

      Figure  9.  Microstructure evolution of sample 2#: (a) as-cast condition; (b) finished product

      圖  10  3#合金組織演變規律. (a)鑄態;(b)成品態

      Figure  10.  Microstructure evolution of sample 3#: (a) as-cast condition; (b) finished product

      表  1  成分質量分數與性能的描述統計

      Table  1.   Statistical description of the composition mass fraction (%) and property data

      Variables Indicators
      Avg Std Min Max Count of
      nonzero value
      w(Mn) /% 0.026 0.11 0 0.5 32
      w(Fe)/% 0.19 0.49 0 2.35 103
      w(Ti)/% 0.16 0.67 0 3.2 61
      w(Co)/% 0.07 0.29 0 1.9 45
      w(P)/% 0.02 0.05 0 0.2 159
      w(Zr)/% 0.01 0.05 0 0.4 64
      w(Sn)/% 0.86 2.06 0 10 208
      w(Cr)/% 0.05 0.17 0 1.02 74
      w(Zn)/% 0.67 3.06 0 22.46 83
      w(Mg)/% 0.04 0.12 0 0.7 101
      w(Si)/% 0.15 0.26 0 0.925 120
      w(Ni)/% 1.6 3.59 0 21 174
      w(Ag)/% 0.002 0.02 0 0.2 12
      w(Al)/% 0.05 0.42 0 3.5 14
      w(Te)/% 0.0003 0.003 0 0.02 12
      UTS/MPa 623 211 248 1450 410
      EC/%IACS 55 27 3 102 410
      下載: 導出CSV

      表  2  銅合金狀態代號的編碼映射表(部分)

      Table  2.   Coding schedule of copper alloy condition symbols (partial)

      Material designation and
      its meaning
      Features and their values after recoding
      Hardened level/% Immediate quenching Precipitation hardening Order hardening Stress relieving Annealed
      H00 1/8 Hard 5 0 0 0 0 0
      H01 1/4 Hard 10 0 0 0 0 0
      H04 Hard 37.1 0 0 0 0 0
      TM00 heat-treated, 1/8 Hard 5 1 0 0 0 0
      TM01 heat-treated, 1/4 Hard 10 1 0 0 0 0
      TM06 heat-treated, extra hard 50 1 0 0 0 0
      TR01 precipitation hardening, stress
      relieving, 1/4 Hard
      10 0 1 0 1 0
      HT04 order-hardening, Hard 37.1 0 0 1 0 0
      O Annealed 0 0 0 0 0 1
      下載: 導出CSV

      表  3  校驗數據生成和平均Spearman系數計算示例(H: 硬化程度; P_EC: 導電率預測值)

      Table  3.   A demo for checking data generation and calculating the average Spearman correlation coefficient values (H: Hardened level; P_EC: Predicted value of EC)

      No. Ni mass fraction/% Si mass fraction/% Ti mass fraction/% ··· H/% P_EC/%IACS Absolute value of spearman
      scores between H and P_EC
      1 0 0.1 0.1 ··· 0 80 0.8
      2 0 0.1 0.1 ··· 15 85
      3 0 0.1 0.1 ··· 30 65
      4 0 0.1 0.1 ··· 45 50
      5 0 0.1 0.1 ··· 60 54
      6 0.2 0.3 0.2 ··· 0 84 0.9
      7 0.2 0.3 0.2 ··· 15 73
      8 0.2 0.3 0.2 ··· 30 37
      9 0.2 0.3 0.2 ··· 45 40
      10 0.2 0.3 0.2 ··· 60 35
      11 0.4 0.2 0.3 0 24
      ··· ··· ··· ··· ··· ··· ··· ···
      Average 0.92
      下載: 導出CSV

      表  4  優化出的高強高導銅合金成分及預測性能

      Table  4.   Compositions and predicted properties of the optimized high-strength and high-conductivity copper alloys

      No. Composition(mass fraction)/% Predicted properties
      UTS/MPa EC/%IACS
      1# Cu–0.5Cr–0.2Zr–0.1Mg–0.05Ti–0.06Fe 613 78.1
      2# Cu–0.6Cr–0.15Zr–0.1Mg–0.02Ti–0.05Sn 635 77.2
      3# Cu–0.6Cr–0.1Zr–0.1Mg–0.02Ti 607 83.4
      下載: 導出CSV
      中文字幕在线观看
    • [1] Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development. Acta Metall Sin, 2021, 57(11): 1343

      謝建新, 宿彥京, 薛德禎, 等. 機器學習在材料研發中的應用. 金屬學報, 2021, 57(11):1343
      [2] Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater, 2016, 4(5): 053208 doi: 10.1063/1.4946894
      [3] Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review. J Mater Sci Technol, 2020, 57: 113 doi: 10.1016/j.jmst.2020.01.067
      [4] Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys. Nat Rev Mater, 2021, 6(8): 730 doi: 10.1038/s41578-021-00340-w
      [5] Chen C, Zuo Y X, Ye W K, et al. A critical review of machine learning of energy materials. Adv Energy Mater, 2020, 10(8): 1903242 doi: 10.1002/aenm.201903242
      [6] Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73 doi: 10.1038/nature17439
      [7] Janet J P, Chan L, Kulik H J. Accelerating chemical discovery with machine learning: Simulated evolution of spin crossover complexes with an artificial neural network. J Phys Chem Lett, 2018, 9(5): 1064 doi: 10.1021/acs.jpclett.8b00170
      [8] Torkamannia A, Omidi Y, Ferdousi R. A review of machine learning approaches for drug synergy prediction in cancer. Brief Bioinform, 2022, 23(3): bbac075 doi: 10.1093/bib/bbac075
      [9] Zheng W D, Zhang H R, Hu H Q, et al. Performance prediction of perovskite materials based on different machine learning algorithms. Chin J Nonferrous Met, 2019, 29(4): 803

      鄭偉達, 張惠然, 胡紅青, 等. 基于不同機器學習算法的鈣鈦礦材料性能預測. 中國有色金屬學報, 2019, 29(4):803
      [10] Balachandran P V, Emery A A, Gubernatis J E, et al. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys Rev Materials, 2018, 2(4): 043802 doi: 10.1103/PhysRevMaterials.2.043802
      [11] She C L, Huang Q C, Chen C, et al. Machine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layers. J Mater Chem A, 2021, 9(44): 25168 doi: 10.1039/D1TA08194B
      [12] Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability. J Phys Chem Lett, 2017, 8(14): 3434 doi: 10.1021/acs.jpclett.7b01046
      [13] Xiong J E, Zhang T Y, Shi S Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun, 2019, 9(2): 576 doi: 10.1557/mrc.2019.44
      [14] Xu Y, Zhang Y F, Gao T, et al. Parameters analysis of Al-based amorphous alloys using support vector regression. Chin J Nonferrous Met, 2016, 26(4): 836

      徐燕, 張玉鳳, 高湉, 等. Al基非晶合金表征參數的支持向量回歸分析. 中國有色金屬學報, 2016, 26(4):836
      [15] Wang J, Xiao B, Liu Y. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy CoxCryTizMouWv. Mater China, 2020, 39(4): 269

      王炯, 肖斌, 劉軼. 機器學習輔助的高通量實驗加速硬質高熵合金CoxCryTizMouWv成分設計. 中國材料進展, 2020, 39(4):269
      [16] Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery. Science, 2022, 378(6615): 78 doi: 10.1126/science.abo4940
      [17] Klimenko D, Stepanov N, Li J A, et al. Machine learning-based strength prediction for refractory high-entropy alloys of the Al–Cr–Nb–Ti–V–Zr system. Materials, 2021, 14(23): 7213 doi: 10.3390/ma14237213
      [18] Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning. NPJ Comput Mater, 2019, 5: 87 doi: 10.1038/s41524-019-0227-7
      [19] Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Mater, 2020, 200: 803 doi: 10.1016/j.actamat.2020.09.068
      [20] Wu S W, Zhou X G, Ren J K, et al. Optimal design of hot rolling process for C–Mn steel by combining industrial data-driven model and multi-objective optimization algorithm. J Iron Steel Res Int, 2018, 25(7): 700 doi: 10.1007/s42243-018-0101-8
      [21] Qiu H D, Tian J Y, Wang S Y, et al. Modeling method of fuzzy neural network and its application in rolling force control. China Metall, 2021, 31(1): 52

      邱華東, 田建艷, 王書宇, 等. 模糊神經網絡融合建模方法及其在軋制力控制中的應用. 中國冶金, 2021, 31(1):52
      [22] Asif K, Zhang L, Derrible S, et al. Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs. J Intell Manuf, 2022, 33(3): 881 doi: 10.1007/s10845-020-01667-x
      [23] Hart-Rawung T, Buhl J, Bambach M. A fast approach for optimization of hot stamping based on machine learning of phase transformation kinetics. Procedia Manuf, 2020, 47: 707 doi: 10.1016/j.promfg.2020.04.218
      [24] Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China. Acta Metall Sin, 2020, 56(10): 1313

      宿彥京, 付華棟, 白洋, 等. 中國材料基因工程研究進展. 金屬學報, 2020, 56(10):1313
      [25] Raissi M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J Mach Learn Res, 2018, 19: 1
      [26] Sun L N, Gao H, Pan S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng, 2020, 361: 112732 doi: 10.1016/j.cma.2019.112732
      [27] Sang L, Xu M, Qian S S, et al. Knowledge graph enhanced neural collaborative filtering with residual recurrent network. Neurocomputing, 2021, 454: 417 doi: 10.1016/j.neucom.2021.03.053
      [28] Chai X Q. Diagnosis method of thyroid disease combining knowledge graph and deep learning. IEEE Access, 2020, 8: 149787 doi: 10.1109/ACCESS.2020.3016676
      [29] Heaton J. The number of hidden layers [R/OL]. Heaton Research (2017-06-01) [2022-09-19]. https://www.heatonresearch.com/2017/06/01/hidden-layers.html
    • 加載中
    圖(10) / 表(4)
    計量
    • 文章訪問數:  404
    • HTML全文瀏覽量:  91
    • PDF下載量:  71
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-09-19
    • 網絡出版日期:  2023-03-01
    • 刊出日期:  2023-11-01

    目錄

      /

      返回文章
      返回