• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    飛機機翼緣條緊固孔細節原始疲勞質量評估方法

    高志剛 何宇廷 馬斌麟 張天宇

    高志剛, 何宇廷, 馬斌麟, 張天宇. 飛機機翼緣條緊固孔細節原始疲勞質量評估方法[J]. 工程科學學報, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005
    引用本文: 高志剛, 何宇廷, 馬斌麟, 張天宇. 飛機機翼緣條緊固孔細節原始疲勞質量評估方法[J]. 工程科學學報, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005
    GAO Zhi-gang, HE Yu-ting, MA Bin-lin, ZHANG Tian-yu. Evaluation method of initial fatigue quality of aircraft wing flange fastener holes[J]. Chinese Journal of Engineering, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005
    Citation: GAO Zhi-gang, HE Yu-ting, MA Bin-lin, ZHANG Tian-yu. Evaluation method of initial fatigue quality of aircraft wing flange fastener holes[J]. Chinese Journal of Engineering, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005

    飛機機翼緣條緊固孔細節原始疲勞質量評估方法

    doi: 10.13374/j.issn2095-9389.2020.01.13.005
    基金項目: 國家自然科學基金資助項目(51805538);陜西省自然科學基礎研究計劃資助項目(2020JQ-476);裝備預研領域基金資助項目(61409220202)
    詳細信息
      通訊作者:

      E-mail:gaozhigang666@126.com

    • 中圖分類號: V215.5

    Evaluation method of initial fatigue quality of aircraft wing flange fastener holes

    More Information
    • 摘要: 為了對飛機機翼緣條緊固孔細節原始疲勞質量進行評估,本文首先對飛機機翼緣條結構中常用的BXXX鋁合金緊固孔試件分別開展了高、中、低3種應力水平下的疲勞試驗,通過斷口判讀和反推得到3組關于裂紋長度a和疲勞壽命t的(a?t)數據,在此基礎上應用當量初始缺陷尺寸(EIFS)控制方程對每個試件的EIFS值進行計算并初步評估,驗證了在不同應力水平下緊固孔結構細節的EIFS無顯著性差異;得到了緊固孔結構細節的裂紋萌生時間(TTCI)分布,在指定應力水平下對緊固孔結構細節95%置信水平下的經濟壽命進行預測,并與設計壽命進行對比,提出了一種不同超越概率P下的結構細節當量初始缺陷尺寸模型,基于給定5%的裂紋超越概率,對結構細節的通用EIFS分布進行評估。通過以上對飛機機翼緣條緊固孔細節原始疲勞質量的三重評估,得到綜合評估結果:飛機機翼緣條緊固孔細節原始疲勞質量滿足要求。

       

    • 圖  1  緊固孔試件尺寸

      Figure  1.  Dimension of fastener hole specimen

      圖  2  試驗機隨機載荷加載跟隨性

      Figure  2.  Random load follow-up of testing machine

      圖  3  試驗現場

      Figure  3.  Test site

      圖  4  組合式讀數攝像平臺成像示意圖

      Figure  4.  Imaging diagram of combined reading camera platform

      圖  5  斷口形貌圖

      Figure  5.  Fracture morphology

      圖  6  裂紋擴展(a?t)曲線。(a)A組/低應力水平;(b)B組/中應力水平;(c)C組/高應力水平

      Figure  6.  Crack growth (a?t) curves: (a) group A—low-stress level; (b) group B—medium-stress level; (c) group C—high-stress level

      圖  7  不同參考裂紋尺寸$ {a}_{\mathrm{r}} $下的Ti求解

      Figure  7.  Ti solution under different reference crack sizes $ {a}_{\mathrm{r}} $

      圖  8  每個試件的EIFS值求解。(a)Qk求解;(b)EIFS值求解

      Figure  8.  EIFS value solution of each specimen: (a) Qk solution; (b) EIFS value solution

      圖  9  不同超越概率下的結構細節當量初始缺陷尺寸曲線

      Figure  9.  Equivalent initial defect size curve of structural details under different exceedance probabilities

      表  1  方差分析表

      Table  1.   Analysis of variance

      SourceSum of deviation squaresDegree of freedomMean square deviationF value
      Between groups0.000035020.00001750.341
      Within Groups0.0008733170.00005137
      Total0.000090819
      Note: The degree of freedom refers to the number of variables whose values are not restricted when calculating a certain statistic. Usually the degree of freedom takes df=n-k, where n is the number of samples and k is the number of restricted conditions or variables.
      下載: 導出CSV

      表  2  TTCI分布參數

      Table  2.   TTCI distribution parameters

      Group number$ \beta $$ \varepsilon $$ \alpha $
      A179564536.529
      B10558267
      C6832172
      下載: 導出CSV

      表  3  經濟壽命$ {T}_{\mathrm{e}} $

      Table  3.   Economic life $ {T}_{\mathrm{e}} $

      Group numberEconomic life, Te/h
      A11829
      B6956
      C4501
      下載: 導出CSV

      表  4  通用EIFS分布參數

      Table  4.   General EIFS distribution parameters

      Group numberQi/10?4$ \alpha $
      A3.045.4466.529
      B5.17
      C7.99
      下載: 導出CSV

      表  5  綜合評估結果

      Table  5.   Comprehensive assessment results

      EvaluationEIFS value of each specimen/mmGeneral EIFS distribution/mmTTCI/h
      Calculated value0.00545–0.025990.021944501
      Allowable value0.1250.1254000
      Evaluation conclusionIFQ meets requirementsIFQ meets requirementsIFQ meets requirements
      下載: 導出CSV
      中文字幕在线观看
    • [1] Chikmath L, Ramanath M N, Dattaguru B. Fatigue life benefits of cold worked holes in fastener joints. Procedia Struct Integr, 2019, 14: 922 doi: 10.1016/j.prostr.2019.07.072
      [2] Correia J A F O, Blasón S, De Jesus A M P, et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Eng Fail Anal, 2016, 69: 15 doi: 10.1016/j.engfailanal.2016.04.003
      [3] Zhao T L, Liu Z Y, Du C W, et al. Modeling for corrosion fatigue crack initiation life based on corrosion kinetics and equivalent initial flaw size theory. Corros Sci, 2018, 142: 277 doi: 10.1016/j.corsci.2018.07.031
      [4] Chinese Aviation Institute. Military Aircraft Fatigue, Damage Tolerance and Durability Design Manual. Beijing: Chinese Aviation Institute Press, 1994

      中國航空研究院. 軍用飛機疲勞·損傷容限·耐久性設計手冊. 北京: 中國航空研究院出版社, 1994
      [5] Liu W T, Zheng M Z, Fei B J. Probability Fracture Mechanics and Probabilistic Damage Tolerance/Durability. Beijing: Beihang University Press, 1999

      劉文珽, 鄭旻仲, 費斌軍. 概率斷裂力學與概率損傷容限/耐久性. 北京: 北京航空航天大學出版社, 1999
      [6] Fawaz S A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices. Fatigue Fract Eng Mater Struct, 2003, 26(3): 279 doi: 10.1046/j.1460-2695.2003.00637.x
      [7] Makeev A, Nikishkov Y, Armanios E. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. Int J Fatigue, 2007, 29(1): 141 doi: 10.1016/j.ijfatigue.2006.01.018
      [8] Wang Z Z, Wang P X, Nie X Z. Evaluation approach to initial fatigue quality of fastener hole. Acta Aeron Astron Sin, 1998, 19(4): 88

      王志智, 王普選, 聶學洲. 一種緊固孔細節原始疲勞質量評定方法. 航空學報, 1998, 19(4):88
      [9] Zhang Y T. Durability Analysis of An Aircraft Wing Box[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008

      張永濤. 某型飛機機翼盒段耐久性分析[學位論文]. 南京: 南京航空航天大學, 2008
      [10] Xiang Y B, Lu Z Z, Liu Y M. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: uniaxial loading. Int J Fatigue, 2010, 32(2): 341 doi: 10.1016/j.ijfatigue.2009.07.011
      [11] Nicolas A, Co N E C, Burns J T, et al. Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects. Eng Fracture Mech, 2019, 220: 106661 doi: 10.1016/j.engfracmech.2019.106661
      [12] Rudd J L. Application of the Equivalent Initial Quality Method AFFDL-TM-76-83-FBE. Dayton: Wright AFB, 1977
      [13] Rudd J L, Gray T D. Quantification of fastener-hole quality. J Aircraft, 1978, 15(3): 143 doi: 10.2514/3.58332
      [14] Yang J N. Statistical Estimation of Economic Life for Aircraft Structures. J Aircraft, 1980, 17(7): 528 doi: 10.2514/3.57935
      [15] Wang D Y. An Investigation of Initial Fatigue Quality: STPZ8860S. West Conshohochen: ASTM Special Technical Publication, 1982
      [16] AFFD System Engineering Office of the Department of Aeronautics and Astronautics. The Background Information of USAF Durability Design Handbook: Vol.Ⅷ. Xi’an: AFFD System Engineering Office of the Department of Aeronautics and Astronautics, 1989

      航空航天部 AFFD 系統辦公室. 美國空軍耐久性手冊背景材料: 第Ⅷ卷. 西安: 航空航天部 AFFD 系統辦公室, 1989
      [17] Moreira P M G P, de Matos P F P, de Castro P M S T. Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens. Theoret Appl Fract Mech, 2005, 43(1): 89 doi: 10.1016/j.tafmec.2004.12.005
      [18] Shahani A R, Kashani H M. Assessment of equivalent initial flaw size estimation methods in fatigue life prediction using compact tension specimen tests. Eng Fract Mech, 2013, 99: 48 doi: 10.1016/j.engfracmech.2013.01.007
      [19] Wu Y Z, Xu Y W, Guo X, et al. Fatigue life prediction based on equivalent initial flaw size for Al-Li alloy 2297 under spectrum loading. Int J Fatigue, 2017, 103: 39 doi: 10.1016/j.ijfatigue.2017.04.015
      [20] Cao C N, Wang Z Z, Zhao X M. Evaluation and coincidence check for initial fatigue quality of fastener hole. J Northwest Polytech Univ, 2000, 18(1): 15 doi: 10.3969/j.issn.1000-2758.2000.01.004

      曹昌年, 王志智, 趙選民. 緊固孔原始疲勞質量評定及符合性檢查. 西北工業大學學報, 2000, 18(1):15 doi: 10.3969/j.issn.1000-2758.2000.01.004
      [21] Zhang S, He Y T, Zhang T, et al. Assessment on initial fatigue quality of aircraft typical connected structure. J Mech Strength, 2016, 38(3): 480

      張勝, 何宇廷, 張騰, 等. 飛機典型連接結構原始疲勞質量評估. 機械強度, 2016, 38(3):480
      [22] Zhou J J, Wang S N. Initial fatigue quality assessment for aircraft wing panel fastener hole. J Northwest Polytech Univ, 2018, 36(1): 91 doi: 10.3969/j.issn.1000-2758.2018.01.013

      周俊杰, 王生楠. 飛機機翼壁板緊固孔細節原始疲勞質量評估. 西北工業大學學報, 2018, 36(1):91 doi: 10.3969/j.issn.1000-2758.2018.01.013
      [23] He Y T, Zhang T, Cui R H, et al. Theory and Technology of Aircraft Structural Life Control. Beijing: National Defense Industry Press, 2017

      何宇廷, 張騰, 崔榮洪, 等. 飛機結構壽命控制原理與技術. 北京: 國防工業出版社, 2017
      [24] Provan J W. Probabilistic Fracture Mechanics and Reliability. Leiden: Martinus Nijhoff Publishers, 1987
      [25] Gao Z T. Fatigue Application Statistics. Beijing: National Defense Industry Press, 1986

      高鎮同. 疲勞應用統計學. 北京: 國防工業出版社, 1986
      [26] Chen Z L, Chen Y Z, Gong X Q, et al. Probability Theory and Mathematical Statistics. Hangzhou: Zhejiang Gongshang University Press, 2016

      陳振龍, 陳宜治, 龔小慶, 等. 概率論與數理統計. 杭州: 浙江工商大學出版社, 2016
    • 加載中
    圖(9) / 表(5)
    計量
    • 文章訪問數:  2936
    • HTML全文瀏覽量:  827
    • PDF下載量:  53
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-01-13
    • 刊出日期:  2021-03-26

    目錄

      /

      返回文章
      返回