• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    面向船舶多種余熱梯級利用的TEG-ORC聯合循環性能

    柳長昕 葉文祥 劉健豪 呂冠澎 趙庭祺 董景明

    柳長昕, 葉文祥, 劉健豪, 呂冠澎, 趙庭祺, 董景明. 面向船舶多種余熱梯級利用的TEG-ORC聯合循環性能[J]. 工程科學學報, 2021, 43(4): 577-583. doi: 10.13374/j.issn2095-9389.2020.01.23.001
    引用本文: 柳長昕, 葉文祥, 劉健豪, 呂冠澎, 趙庭祺, 董景明. 面向船舶多種余熱梯級利用的TEG-ORC聯合循環性能[J]. 工程科學學報, 2021, 43(4): 577-583. doi: 10.13374/j.issn2095-9389.2020.01.23.001
    LIU Chang-xin, YE Wen-xiang, LIU Jian-hao, Lü Guan-peng, ZHAO Ting-qi, DONG Jing-ming. TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels[J]. Chinese Journal of Engineering, 2021, 43(4): 577-583. doi: 10.13374/j.issn2095-9389.2020.01.23.001
    Citation: LIU Chang-xin, YE Wen-xiang, LIU Jian-hao, Lü Guan-peng, ZHAO Ting-qi, DONG Jing-ming. TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels[J]. Chinese Journal of Engineering, 2021, 43(4): 577-583. doi: 10.13374/j.issn2095-9389.2020.01.23.001

    面向船舶多種余熱梯級利用的TEG-ORC聯合循環性能

    doi: 10.13374/j.issn2095-9389.2020.01.23.001
    基金項目: 國家重點研發計劃資助項目(2017YFC14046);遼寧省自然科學基金資助項目(201601063);中央高校基本科研業務費資助項目(3132018255,3132019330)
    詳細信息
      通訊作者:

      E-mail: liu_changxin@dlmu.edu.cn

    • 中圖分類號: TK121

    TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels

    More Information
    • 摘要: 傳統的溫差發電(TEG)和有機朗肯循環(ORC)等技術難以兼顧船舶多種性質余熱的不同特點,且利用率較低。本文提出了一種TEG-ORC聯合循環船舶余熱梯級利用系統,研究了ORC底循環蒸發壓力變化對系統輸出功率、熱效率、多級余熱利用量和成本等重要性能的影響。結果表明,TEG-ORC聯合循環實現了發電成本和熱效率的優化,在TEG/ORC底循環比為0.615的工況下,主機煙氣余熱利用率隨ORC蒸發壓力的增加在小區間波動,系統的余熱利用功率、輸出功率和熱效率均隨ORC蒸發壓力的增加而增大,系統單位發電成本隨ORC蒸發壓力的增加而降低。在ORC蒸發壓力達到0.9 MPa時,主機煙氣余熱利用率為62.15%,余熱利用功率為1919.68 W,輸出功率為139.22 W,熱效率為7.25%,單位發電成本為3.09 ¥·(kW·h)–1

       

    • 圖  1  TEG-ORC聯合循環系統理論模型

      Figure  1.  Theoretical model of the thermoelectric generator and organic Rankine cycle (TEG-ORC) combined cycle

      圖  2  基于TEG-ORC聯合循環的船舶余熱梯級利用裝置系統原理圖

      Figure  2.  Schematic of a ship waste heat cascade utilization system based on the TEG-ORC combined cycle

      圖  3  TEG-ORC聯合循環實驗系統(A—電路控制單元;B—模擬煙氣加熱單元;C—缸套水余熱利用單元;D—增壓空氣余熱利用單元;E—蒸發器;F—小型渦旋膨脹機;G—工質罐;H—冷凝器;I—工質泵;J—數據監測和采集單元;K—流量傳感器;L—溫度傳感器;M—壓力傳感器;N—背壓閥;O—滑動變阻器)

      Figure  3.  TEG-ORC combined cycle experimental system (A—circuit control unit; B—simulated exhaust heating unit; C—cylinder liner water waste heat utilization unit; D—charge air waste heat utilization unit; E—evaporator; F—small scroll expander; G—working fluid tank; H—condenser; I—working fluid pump; J—data monitoring acquisition unit; K—flow sensor; L—temperature sensor; M—pressure sensor; N—back pressure valve; O—slide rheostat)

      圖  4  不同工質蒸發壓力下系統的余熱利用功率

      Figure  4.  System recovery power from waste heat under different working fluid evaporation pressures

      圖  5  不同工質蒸發壓力下系統的輸出功率和單位發電成本

      Figure  5.  Power output and generation cost under different working fluid evaporation pressures

      圖  6  不同工質蒸發壓力下系統的單位發電成本和熱效率

      Figure  6.  Generation cost and thermal efficiency under different working fluid evaporation pressures

      圖  7  不同工質蒸發壓力下系統的輸出功率和熱效率

      Figure  7.  Power output and thermal efficiency under different working fluid evaporation pressures

      圖  8  不同工質蒸發壓力下主機煙氣余熱利用量和煙氣溫降

      Figure  8.  Waste heat recovery quantity and temperature drop of the gas under different working fluid evaporation pressures

      圖  9  不同工質蒸發壓力下主機煙氣余熱利用率和輸出功率

      Figure  9.  Waste heat recovery rate and power output under different working fluid evaporation pressures

      中文字幕在线观看
    • [1] Shu G Q, Liang Y C, Wei H Q, et al. A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sust Energ Rev, 2013, 19: 385 doi: 10.1016/j.rser.2012.11.034
      [2] He S C. The Development, Reformation and Prospect of the EU Emission Trade Scheme [Dissertation]. Changchun: Jilin University, 2016.

      何少琛. 歐盟碳排放交易體系發展現狀、改革方法及前景[學位論文]. 長春: 吉林大學, 2016.
      [3] Georgopoulou C A, Dimopoulos G G, Kakalis N M P. A modular dynamic mathematical model of thermoelectric elements for marine applications. Energy, 2016, 94: 13 doi: 10.1016/j.energy.2015.10.130
      [4] Huang K, Yan Y Y, Li B, et al. A novel design of thermoelectric generator for automotive waste heat recovery. Automotive Innovation, 2018, 1(1): 54 doi: 10.1007/s42154-018-0006-z
      [5] Huang K, Li B, Yan Y Y, et al. A comprehensive study on a novel concentric cylindrical thermoelectric power generation system. Appl Therm Eng, 2017, 117: 501 doi: 10.1016/j.applthermaleng.2017.02.060
      [6] Liu C X, Pan X X, Zheng X F, et al. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. J Energy Inst, 2016, 89(2): 271 doi: 10.1016/j.joei.2015.01.019
      [7] Liu C X, Li W Z. An experimental study of a novel prototype for thermoelectric power generation from vehicle exhaust. Distrib Generat Alternat Energy J, 2013, 28(4): 32 doi: 10.1080/21563306.2013.10750234
      [8] Liu C X, Li W Z. An experimental study of a two-stage thermoelectric generator using heat pipe in vehicle exhaust. Distrib Generat Alternat Energy J, 2015, 30(1): 15 doi: 10.1080/21563306.2015.11101969
      [9] Zheng X F, Liu C X, Yan Y Y, et al. Experimental study of a domestic thermoelectric cogeneration system. Appl Therm Eng, 2014, 62(1): 69 doi: 10.1016/j.applthermaleng.2013.09.008
      [10] Liu C X, Li F M, Zhao C, et al. Experiment research of thermal electric power generation from ship incinerator exhaust heat. IOP Conf Ser Earth Environ Sci, 2019, 227(2): 022031
      [11] Yang M H, Yeh R H. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl Energ, 2015, 149: 1 doi: 10.1016/j.apenergy.2015.03.083
      [12] Miller E W, Hendricks T J, Peterson R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle. J Electron Mater, 2009, 38(7): 1206 doi: 10.1007/s11664-009-0743-1
      [13] Miller E W, Hendricks T J, Wang H, et al. Integrated dual-cycle energy recovery using thermoelectric conversion and an organic Rankine bottoming cycle. Proc Inst Mech Eng Part A J Power Energy, 2011, 225(1): 33 doi: 10.1177/2041296710394238
      [14] Qiu K, Hayden A C S. Integrated thermoelectric and organic Rankine cycles for micro-CHP systems. Appl Energ, 2012, 97: 667 doi: 10.1016/j.apenergy.2011.12.072
      [15] Shu G Q, Zhao J, Tian H, et al. Parametric and exergetic analysis of waste heat recovery system based on the thermoelectric generator and organic rankine cycle utilizing R123. Energy, 2012, 45(1): 806 doi: 10.1016/j.energy.2012.07.010
      [16] Shu G Q, Zhoa J, Tian H, et al. Theoretical analysis of engine waste heat recovery by the combined thermo-generator and organic Rankine cycle system // SAE Technical Papers, 2012.
      [17] Ye W X, Liu C X, Liu J H, et al. Experimental research of ship waste heat utilization by TEG-ORC combined cycle. J XiAn Jiaotong Univ, 2020, 54(8): 50.
      [18] Liu C X, Ye W X, Li H A, et al. Experimental study on cascade utilization of ship’s waste heat based on TEG-ORC combined cycle. Int J Energ Res, https://doi.org/10.1002/er.6083.
      [19] Oralli E. Conversion of a Scroll Compressor to an Expander for Organic Rankine Cycle: Modeling and Analysis[Dissertation]. Toronto: University of Ontario Institute of Technology, 2010.
      [20] Saghlatoun S. Investigation of a Scroll Compressor as an ORC Expander for IC Engine Waste Heat Recovery[Dissertation]. Beijing: Tsinghua University, 2015.

      美麗魚. 將旋轉壓縮機作為內燃機廢熱回收ORC膨脹機的研究[學位論文]. 北京: 清華大學, 2015
    • 加載中
    圖(9)
    計量
    • 文章訪問數:  2414
    • HTML全文瀏覽量:  1038
    • PDF下載量:  88
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-01-23
    • 刊出日期:  2021-04-26

    目錄

      /

      返回文章
      返回