• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    不同層理頁巖常規三軸壓縮力學特性離散元模擬

    楊圣奇 孫博文 田文嶺

    楊圣奇, 孫博文, 田文嶺. 不同層理頁巖常規三軸壓縮力學特性離散元模擬[J]. 工程科學學報, 2022, 44(3): 430-439. doi: 10.13374/j.issn2095-9389.2020.10.12.005
    引用本文: 楊圣奇, 孫博文, 田文嶺. 不同層理頁巖常規三軸壓縮力學特性離散元模擬[J]. 工程科學學報, 2022, 44(3): 430-439. doi: 10.13374/j.issn2095-9389.2020.10.12.005
    YANG Sheng-qi, SUN Bo-wen, TIAN Wen-ling. Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression[J]. Chinese Journal of Engineering, 2022, 44(3): 430-439. doi: 10.13374/j.issn2095-9389.2020.10.12.005
    Citation: YANG Sheng-qi, SUN Bo-wen, TIAN Wen-ling. Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression[J]. Chinese Journal of Engineering, 2022, 44(3): 430-439. doi: 10.13374/j.issn2095-9389.2020.10.12.005

    不同層理頁巖常規三軸壓縮力學特性離散元模擬

    doi: 10.13374/j.issn2095-9389.2020.10.12.005
    基金項目: 國家自然科學基金資助項目(42077231)
    詳細信息
      通訊作者:

      E-mail: yangsqi@hotmal.com

    • 中圖分類號: TU45

    Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression

    More Information
    • 摘要: 頁巖作為頁巖氣儲層,在沉積過程中形成部分弱面,在力學特性上表現出各向異性特征。所以,使用離散元軟件從微細觀層面探討深部頁巖力學各向異性特征具有重要實踐意義。基于頁巖室內常規三軸壓縮試驗結果,采用離元程序PFC2D對常規三軸壓縮下不同層理傾角頁巖進行了顆粒流模擬研究,分析了層理傾角及圍壓對頁巖力學特性的影響規律。結果表明:(1)頁巖峰值強度與黏聚力隨層理傾角的增加整體呈“U”形變化,但峰值強度在不同圍壓下的變化趨勢有所區別;而內摩擦角隨層理傾角的增大呈非線性變化。(2)層理傾角對頁巖周圍顆粒的位移方向及大小的影響隨著層理面與軸向應力的夾角的增大而減小。(3)同一層理傾角試樣最終破壞時的微裂紋總數隨著圍壓的升高有所增加;同一圍壓下,試樣最終破壞時的微裂紋數目,隨著層理傾角的增加呈現先減少后增多的趨勢。(4)同一層理傾角頁巖的脆性隨圍壓的增長整體呈下降趨勢;低圍壓情況下,頁巖脆性隨層理傾角的增加呈兩端大中間小的變化規律。

       

    • 圖  1  β=0°頁巖模擬試樣示意圖

      Figure  1.  Numerical model of β=0° shale generated by PFC2D

      圖  2  層理頁巖室內試驗與模擬峰值強度對比。(a)β=0°;(b)β=90°

      Figure  2.  Comparison between the experimental and numerical peak strength of the bedding shale: (a) β = 0°; (b) β = 90°

      圖  3  頁巖峰值強度參數與層理傾角的關系。(a)峰值強度隨層理傾角的變化;(b)黏聚力、摩擦角隨層理傾角的變化

      Figure  3.  Relationship between the peak strength parameters of shale and bedding inclinations: (a) peak strength variation vs bedding inclinations; (b) cohesion variation C and internal friction angle φ vs bedding inclinations

      圖  4  不同圍壓層理頁巖最終破裂模式 (β=15°)

      Figure  4.  Ultimate failure modes of the bedding shale in different confining pressures (β=15°)

      圖  5  不同圍壓層理頁巖最終破裂模式 (β = 30°)

      Figure  5.  Ultimate failure modes of the bedding shale in different confining pressures (β = 30°)

      圖  6  不同圍壓層理頁巖最終破裂模式 (β = 45°)

      Figure  6.  Ultimate failure modes of the bedding shale in different confining pressures (β = 45°)

      圖  7  不同圍壓層理頁巖最終破裂模式(β=60°)

      Figure  7.  Ultimate failure modes of the bedding shale in different confining pressures (β = 60°)

      圖  8  不同圍壓層理頁巖最終破裂模式(β = 75°)

      Figure  8.  Ultimate failure modes of the bedding shale in different confining pressures (β = 75°)

      圖  9  不同層理傾角試樣位移場示意圖。(a)β=15°;(b)β=45°;(c)β=75°

      Figure  9.  Diagram of the displacement field of specimens with different bedding inclinations: (a) β=15°; (b) β=45°; (c) β=75°

      圖  10  層理頁巖微裂紋演化曲線。(a)不同圍壓下β=0°頁巖微裂紋演化規律;(b)不同層理傾角頁巖微裂紋演化規律(σ3=60 MPa)

      Figure  10.  Evolution curves of the number of microcracks of the bedding shale: (a) evolution law of shale microcrack at β=0° under different confining pressures; (b) evolution law of microcracks in shale with different bedded inclination angles (σ3=60 MPa)

      圖  11  峰前應力?應變曲線法

      Figure  11.  Method of stress?strain curve before peak

      圖  12  不同層理傾角下脆性指標隨圍壓的變化

      Figure  12.  Variation of brittleness index with confining pressure under different bedding dip angles

      圖  13  不同圍壓下脆性指標隨層理傾角的變化

      Figure  13.  Variation of brittleness index with bedding dip under different confining pressures

      表  1  頁巖PFC2D細觀參數

      Table  1.   Micro-parameters of shale in PFC2D

      pb_emod/
      GPa
      pb_kratpb_ten/
      MPa
      pb_coh/
      MPa
      sj_kn/
      GPa
      sj_ks/
      GPa
      sj_ten/
      MPa
      sj_coh/
      MPa
      431.713257120002000187
      下載: 導出CSV

      表  2  常規三軸壓縮下層理頁巖試驗與模擬破壞模式對比

      Table  2.   Comparison between experimental and numerical failure modes of the bedding shale specimens underconventional triaxial compression

      Bedding inclination/(°)Failure modeConfining pressures/MPa
      0510204060
      0Experimental result[21]
      Numerical result
      90Experimental result [21]
      Numerical result
      下載: 導出CSV
      中文字幕在线观看
    • [1] Jia C G, Chen J H, Guo Y T, et al. Research on mechanical behaviors and failure modes of layer shale. Rock Soil Mech, 2013, 34(S2): 57

      賈長貴, 陳軍海, 郭印同, 等. 層狀頁巖力學特性及其破壞模式研究. 巖土力學, 2013, 34(S2):57
      [2] Heng S, Yang C H, Zhang B P, et al. Experimental research on anisotropic properties of shale. Rock Soil Mech, 2015, 36(3): 609

      衡帥, 楊春和, 張保平, 等. 頁巖各向異性特征的試驗研究. 巖土力學, 2015, 36(3):609
      [3] Yao G H, Chen Q, Liu H, et al. Experiment study on mechanical properties of bedding shale in lower Silurian Longmaxi shale southeast Chongqing. Chin J Rock Mech Eng, 2015, 34(S1): 3313

      姚光華, 陳喬, 劉洪, 等. 渝東南下志留統龍馬溪組層理性頁巖力學特性試驗研究. 巖石力學與工程學報, 2015, 34(S1):3313
      [4] Chen T Y, Feng X T, Zhang X W, et al. Experimental study on mechanical and anisotropic properties of black shale. Chin J Rock Mech Eng, 2014, 33(9): 1772

      (陳天宇, 馮夏庭, 張希巍, 等. 黑色頁巖力學特性及各向異性特性試驗研究. 巖石力學與工程學報, 2014, 33(9):1772
      [5] Xiong J, Lin H Y, Liu X J, et al. High temperature effects on rock physical properties of organic-rich shale. Petroleum Geol Exp, 2019, 41(6): 910 doi: 10.11781/sysydz201906910

      熊健, 林海宇, 劉向君, 等. 高溫對富有機質頁巖巖石物理特性的影響. 石油實驗地質, 2019, 41(6):910 doi: 10.11781/sysydz201906910
      [6] Masri M, Sibai M, Shao J F, et al. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci, 2014, 70: 185 doi: 10.1016/j.ijrmms.2014.05.007
      [7] Meng L B, Li T B, Xu J, et al. Experimental study on influence of confining pressure on shale mechanical properties under high temperature condition. J China Coal Soc, 2012, 37(11): 1829

      孟陸波, 李天斌, 徐進, 等. 高溫作用下圍壓對頁巖力學特性影響的試驗研究. 煤炭學報, 2012, 37(11):1829
      [8] He B, Xie L Z, Li F X, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale. Sci Sin (Phys Mech Astron), 2017, 47(11): 107

      何柏, 謝凌志, 李鳳霞, 等. 龍馬溪頁巖各向異性變形破壞特征及其機理研究. 中國科學:物理學 力學 天文學, 2017, 47(11):107
      [9] Qi Q, Zhu W Y. Moving boundary analysis of fractured shale gas reservoir. Chin J Eng, 2019, 041(011): 1387

      亓倩, 朱維耀. 復雜壓裂縫網頁巖氣儲層壓力傳播動邊界研究. 工程科學學報, 2019, 041(011):1387
      [10] Wang H, Li Y, Cao S G, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests. J Min Saf Eng, 2020, 37(3): 604

      王輝, 李勇, 曹樹剛, 等. 基于巴西劈裂實驗的層狀頁巖斷裂特征試驗研究. 采礦與安全工程學報, 2020, 37(3):604
      [11] Yang Z P, He B, Xie L Z, et al. Strength and failure modes of shale based on Brazilian test. Rock Soil Mech, 2015, 36(12): 3447

      楊志鵬, 何柏, 謝凌志, 等. 基于巴西劈裂試驗的頁巖強度與破壞模式研究. 巖土力學, 2015, 36(12):3447
      [12] Hou P, Gao F, Yang Y G, et al. Effect of bedding orientation on failure of black shale under Brazilian tests and energy analysis. Chin J Geotech Eng, 2016, 38(5): 930 doi: 10.11779/CJGE201605020

      侯鵬, 高峰, 楊玉貴, 等. 黑色頁巖巴西劈裂破壞的層理效應研究及能量分析. 巖土工程學報, 2016, 38(5):930 doi: 10.11779/CJGE201605020
      [13] Yang S Q, Yin P F, Ranjith P G. Experimental study on mechanical behavior and brittleness characteristics of Longmaxi formation shale in Changning, Sichuan Basin, China. Rock Mech Rock Eng, 2020, 53(5): 2461 doi: 10.1007/s00603-020-02057-8
      [14] Diao H Y. Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrol Sin, 2013, 29(9): 3300

      刁海燕. 泥頁巖儲層巖石力學特性及脆性評價. 巖石學報, 2013, 29(9):3300
      [15] Yuan J L, Deng J G, Zhang D Y, et al. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sin, 2013, 34(3): 523 doi: 10.7623/syxb201303015

      袁俊亮, 鄧金根, 張定宇, 等. 頁巖氣儲層可壓裂性評價技術. 石油學報, 2013, 34(3):523 doi: 10.7623/syxb201303015
      [16] Guo T K, Zhang S C, Pan L H. Numerical simulation study of hydraulic fracture initiation for perforated horizontal well in shale play. Chin J Rock Mech Eng, 2015, 34(S1): 2721

      郭天魁, 張士誠, 潘林華. 頁巖儲層射孔水平井水力裂縫起裂數值模擬研究. 巖石力學與工程學報, 2015, 34(增刊1): 2721
      [17] Bian K, Chen Y A, Liu J, et al. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method. Rock Soil Mech, 2020, 41(S1): 355

      卞康, 陳彥安, 劉建, 等. 不同吸水時間下頁巖卸荷破壞特征的顆粒離散元研究. 巖土力學, 2020, 41(增刊1): 355
      [18] Liang Z Z, Tang C A, Li H X, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock Soil Mech, 2005, 26(1): 57 doi: 10.3969/j.issn.1000-7598.2005.01.012

      梁正召, 唐春安, 李厚祥, 等. 單軸壓縮下橫觀各向同性巖石破裂過程的數值模擬. 巖土力學, 2005, 26(1):57 doi: 10.3969/j.issn.1000-7598.2005.01.012
      [19] Yang Z, Liu T C, Hao L L, et al. Numerical simulation of influence of homogeneous degree on layer shale acoustic emission. J Nanchang Univ (Eng Technol), 2017, 39(2): 140

      楊志, 劉同成, 郝亮亮, 等. 均質度對層理頁巖破壞過程聲發射影響的數值模擬. 南昌大學學報(工科版), 2017, 39(2):140
      [20] Zhang S R, Sun B, Wang C, et al. Discrete element analysis of crack propagation in rocks under biaxial compression. Chin J Rock Mech Eng, 2013, 32(Sup2): 3083

      張社榮, 孫博, 王超, 等. 雙軸壓縮試驗下巖石裂紋擴展的離散元分析. 巖石力學與工程學報, 2013, 32(增刊2): 3083
      [21] Yang S Q, Yin P F, Li B, et al. Behavior of transversely isotropic shale observed in triaxial tests and Brazilian disc tests. Int J Rock Mech Min Sci, 2020, 133: 104435 doi: 10.1016/j.ijrmms.2020.104435
      [22] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001
      [23] Tian W L, Yang S Q, Huang Y H. PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures. J Min Saf Eng, 2017, 34(6): 1207

      田文嶺, 楊圣奇, 黃彥華. 不同圍壓下共面雙裂隙脆性砂巖裂紋演化特性顆粒流模擬研究. 采礦與安全工程學報, 2017, 34(6):1207
      [24] Huang Y H, Yang S Q. Particle flow simulation of macro- and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures. Chin J Rock Mech Eng, 2014, 33(8): 1644

      黃彥華, 楊圣奇. 非共面雙裂隙紅砂巖宏細觀力學行為顆粒流模擬. 巖石力學與工程學報, 2014, 33(8):1644
      [25] Zhang X P, Wong L N Y. Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int J Fract, 2013, 180(1): 93 doi: 10.1007/s10704-012-9803-2
      [26] Jaeger J C. Shear failure of anistropic rocks. Geol Mag, 1960, 97(1): 65 doi: 10.1017/S0016756800061100
      [27] Wang H J, Liu D A, Huang Z Q, et al. Mechanical properties and brittleness evaluation of layered shale rock. J Eng Geol, 2017, 25(6): 1414

      王洪建, 劉大安, 黃志全, 等. 層狀頁巖巖石力學特性及其脆性評價. 工程地質學報, 2017, 25(6):1414
      [28] Ren Y, Cao H, Yao F C, et al. Review of rock brittleness evaluation methods. Oil Geophys Prospect, 2018, 53(4): 875

      任巖, 曹宏, 姚逢昌, 等. 巖石脆性評價方法進展. 石油地球物理勘探, 2018, 53(4):875
      [29] Zhang J, Ai C, Li Y W, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure. Chin J Rock Mech Eng, 2017, 36(6): 1326

      張軍, 艾池, 李玉偉, 等. 基于巖石破壞全過程能量演化的脆性評價指數. 巖石力學與工程學報, 2017, 36(6):1326
    • 加載中
    圖(13) / 表(2)
    計量
    • 文章訪問數:  1269
    • HTML全文瀏覽量:  511
    • PDF下載量:  126
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-10-12
    • 網絡出版日期:  2021-01-28
    • 刊出日期:  2022-01-08

    目錄

      /

      返回文章
      返回