• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于云理論的大壩整體性態評價模型

    姜振翔 陳輝 陳柏全

    姜振翔, 陳輝, 陳柏全. 基于云理論的大壩整體性態評價模型[J]. 工程科學學報, 2022, 44(3): 464-473. doi: 10.13374/j.issn2095-9389.2020.10.15.001
    引用本文: 姜振翔, 陳輝, 陳柏全. 基于云理論的大壩整體性態評價模型[J]. 工程科學學報, 2022, 44(3): 464-473. doi: 10.13374/j.issn2095-9389.2020.10.15.001
    JIANG Zhen-xiang, CHEN Hui, CHEN Bai-quan. Evaluation model of overall dam behavior based on cloud theory[J]. Chinese Journal of Engineering, 2022, 44(3): 464-473. doi: 10.13374/j.issn2095-9389.2020.10.15.001
    Citation: JIANG Zhen-xiang, CHEN Hui, CHEN Bai-quan. Evaluation model of overall dam behavior based on cloud theory[J]. Chinese Journal of Engineering, 2022, 44(3): 464-473. doi: 10.13374/j.issn2095-9389.2020.10.15.001

    基于云理論的大壩整體性態評價模型

    doi: 10.13374/j.issn2095-9389.2020.10.15.001
    基金項目: 江西省教育廳科學技術研究項目(GJJ190970);國家自然科學基金資助項目(52109156)
    詳細信息
      通訊作者:

      jiangzhenxiang89@163.com

    • 中圖分類號: TV39

    Evaluation model of overall dam behavior based on cloud theory

    More Information
    • 摘要: 現有的大壩整體性態評價方法以定性評價為主,主觀性較強。針對這一問題,以單測點監控模型的計算值與監測儀器實測值之間的殘差為基礎,提出采用多測點融合殘差表征大壩整體性態。結合信息熵理論研究了不同測點的殘差變化規律,從而對各測點殘差的融合權重進行了分配,計算了融合殘差。通過對融合殘差進行分布分析,利用逆向云發生器、正向云發生器建立了表征大壩不同性態的概念云,即評價標準。在此基礎上,結合云相似度算法,建立了大壩整體性態的評價模型。算例表明,該模型能夠有效識別大壩監測資料中的異常測值,并能夠定量、客觀地評價大壩整體性態,評價結果合理、可靠,可為保障大壩安全運行提供重要參考。

       

    • 圖  1  云的數字特征和外包絡曲線

      Figure  1.  Characteristics and envelope curves of the cloud

      圖  2  不同相交條件下的云重疊面積。(a)全云CqCl相交,一個交點;(b)全云CqCl相交,兩個交點;(c)半云CqCl相交,一個交點;(d)半云CqCl相交,兩個交點

      Figure  2.  Overlapping area of clouds under different intersection conditions: (a) entire cloud Cq intersecting Cl with one intersection; (b) entire cloud Cq intersecting Cl with two intersections; (c) half cloud Cq intersecting Cl with one intersection; (d) half cloud Cq intersecting Cl with two intersections

      圖  3  $ {\boldsymbol{\varDelta}} $概率密度曲線及下分位點位置示意

      Figure  3.  Probability density curve of $ {\boldsymbol{\varDelta}} $ and the fractile

      圖  4  混凝土壩監測信息。(a)壩頂引張線示意圖;(b)EX401~EX409測點過程線;(c)上游水位與溫度過程線

      Figure  4.  Monitoring information of a concrete dam: (a) extension line in the dam crest; (b) process line of EX401?EX409; (c) process line of the upstream water level and temperature

      圖  5  融合殘差過程線

      Figure  5.  Process line of fusion residual

      圖  6  融合殘差特征。(a)融合殘差的概率密度曲線與特征分位點;(b)大壩整體性態評價標準(概念云)

      Figure  6.  Characteristics of fusion residuals: (a) probability density curve of fusion residuals and feature quantiles; (b) evaluation criteria for the integrity of a dam (conceptual cloud)

      圖  7  概念云與評價云(2010—2014年)外包絡曲線。(a)2010年;(b)2011年;(c)2012年;(d)2013年;(e)2014年

      Figure  7.  Concept cloud and evaluation cloud envelope curve during year of 2010—2014: (a) 2010; (b) 2011; (c) 2012; (d) 2013; (e) 2014

      表  1  云重疊面積計算方法

      Table  1.   Calculation method of the cloud overlapping area

      Intersection diagramAbscissa of the intersectionSCalculation method
      Fig.2(a)$ {x_{\text{a}}} $$ {S_1} + {S_2} $$ \int_{{E_{{\text{x,}}}}_l - 3{E_{{\text{n,}}}}_l}^{{x_{\text{a}}}} {{y_l}(x){\text{d}}x + \int_{{x_{\text{a}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
      Fig.2(b)$ {x_{\text{b}}},\;{x_{\text{c}}} $$ {S_1} + {S_2} + {S_3} $$ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{x_{\text{b}}}} {{y_q}(x){\text{d}}x + \int_{{x_{\text{b}}}}^{{x_{\text{c}}}} {{y_l}(x){\text{d}}x} + \int_{{x_{\text{c}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
      Fig.2(c)$ {x_{\text{d}}} $$ {S_1} + {S_2} $$ \int_{{E_{{\text{x,}}l}} - 3{E_{{\text{n,}}l}}}^{{x_{\text{d}}}} {{y_l}(x){\text{d}}x + \int_{{x_d}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
      Fig.2(d)$ {x_{\text{e}}},\;{x_{\text{f}}} $$ {S_1} + {S_2} + {S_3} $$ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{x_{\text{e}}}} {{y_q}(x){\text{d}}x + \int_{{x_{\text{e}}}}^{{x_{\text{f}}}} {{y_l}(x){\text{d}}x} + \int_{{x_{\text{f}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
      $ {S_q} $$ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} $
      $ {S_l} $$ \int_{{E_{{\text{x,}}l}} - 3{E_{{\text{n,}}l}}}^{{E_{{\text{x,}}l}} + 3{E_{{\text{n,}}l}}} {{y_l}(x){\text{d}}x} $
      下載: 導出CSV

      表  2  大壩整體性態評價標準(概念云)

      Table  2.   Evaluation criteria for the integrity of a dam (conceptual cloud)

      Concept cloudQualitative conceptExtraction range of cloud feature parameters
      ${C_1}$Abnormal$( - \infty ,\;{\mu _{0.025}})$
      ${C_2}$Basically normal$[{\mu _{0.025}},\;{\mu _{0.150}})$
      ${C_3}$Normal$[{\mu _{0.150}},\;{\mu _{0.850}})$
      ${C_4}$Basically normal$[{\mu _{0.850}},\;{\mu _{0.975}})$
      ${C_5}$Abnormal$[{\mu _{0.975}},\; + \infty )$
      下載: 導出CSV

      表  3  EX401~EX409監控模型計算值與實測值相關系數

      Table  3.   Correlation coefficient between the calculated value and measured value of EX401?EX409

      EX401EX402EX403EX404EX405EX406EX407EX408EX409
      0.8640.8110.8230.8950.8720.8890.8250.8140.802
      下載: 導出CSV

      表  4  各測點殘差的權重

      Table  4.   Weight of residuals of each point

      EX401EX402EX403EX404EX405EX406EX407EX408EX409
      0.0620.1390.2070.0580.0680.0720.1120.1380.144
      下載: 導出CSV

      表  5  概念云特征參數

      Table  5.   Characteristic parameters of the concept cloud

      Concept cloudQualitative conceptExtraction range of cloud feature parametersExEnHe
      ${C_1}$Abnormal$( - \infty ,\;{\mu _{0.025}})$?1.69480.27550.0307
      ${C_2}$Basically normal$[{\mu _{0.025}},\;{\mu _{0.150}})$?0.9920.18670.0486
      ${C_3}$Normal$[{\mu _{0.150}},\;{\mu _{0.850}})$?0.01710.4070.1358
      ${C_4}$Basically normal$[{\mu _{0.850}},\;{\mu _{0.975}})$1.07760.2470.0825
      ${C_5}$Abnormal$[{\mu _{0.975}},\; + \infty )$1.88140.24240.113
      下載: 導出CSV

      表  6  2010—2014年各年度云特征參數

      Table  6.   Cloud parameters for each year from 2010—2014

      Year${E_{\text{x}}}$${E_{\text{n}}}$${H_{\text{e}}}$
      2010?0.13260.69390.2186
      2011?0.23360.63080.1534
      20120.07920.77810.2951
      2013?1.10440.42790.1125
      2014?0.21230.70980.2003
      下載: 導出CSV

      表  7  2010—2014年各年評價云與概念云的相似度

      Table  7.   Similarity between evaluating clouds and concept clouds from 2010 to 2014

      Year${\eta _1}$${\eta _2}$${\eta _3}$${\eta _4}$${\eta _5}$Evaluation results
      20100.1040.2630.7570.3350.135Normal
      20110.1080.3020.8960.2830.109Normal
      20120.0940.2230.6320.3420.149Normal
      20130.1960.4990.3840.0490.016Basically normal
      20140.1060.2690.7610.3130.125Normal
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhu B F. China is the largest and strongest country of concrete arch dams in the world. Water Resour Hydropower Eng, 2017, 48(2): 1

      朱伯芳. 中國是世界拱壩大國也是世界拱壩強國——在《特高拱壩建設總結及安全運行管理研究》會議上的發言. 水利水電技術, 2017, 48(2):1
      [2] Gu C S, Su H Z, Wang S W. Advances in calculation models and monitoring methods for long-term deformation behavior of concrete dams. J Hydroelectr Eng, 2016, 35(5): 1 doi: 10.11660/slfdxb.20160501

      顧沖時, 蘇懷智, 王少偉. 高混凝土壩長期變形特性計算模型及監控方法研究進展. 水力發電學報, 2016, 35(5):1 doi: 10.11660/slfdxb.20160501
      [3] Li M C, Ren Q B, Kong R, et al. Dynamic modeling and prediction analysis of dam deformation under multidimensional complex relevance. J Hydraul Eng, 2019, 50(6): 687

      李明超, 任秋兵, 孔銳, 等. 多維復雜關聯因素下的大壩變形動態建模與預測分析. 水利學報, 2019, 50(6):687
      [4] Dong D D, Zu A J, Sun X L. Model of dam deformation monitoring based on genetic ant colony optimization and back propagation improved by Markov chain. J Yangtze River Sci Res Inst, 2019, 36(7): 48 doi: 10.11988/ckyyb.20171438

      董丹丹, 祖安君, 孫雪蓮. 基于GACO-BP-MC的大壩變形監控模型. 長江科學院院報, 2019, 36(7):48 doi: 10.11988/ckyyb.20171438
      [5] Wei B W, Peng S J, Xu Z K, et al. The GA-BP prediction model considering chaos effect of dam displacement residual. Sci Sin Technol, 2015, 45(5): 541 doi: 10.1360/N092014-00181
      [6] Hu D X, Qu X D, Yang J, et al. A safety monitoring model of dam deformation based on M-ELM. Adv Sci Technol Water Resour, 2019, 39(3): 75 doi: 10.3880/j.issn.1006-7647.2019.03.013

      胡德秀, 屈旭東, 楊杰, 等. 基于M-ELM的大壩變形安全監控模型. 水利水電科技進展, 2019, 39(3):75 doi: 10.3880/j.issn.1006-7647.2019.03.013
      [7] Dai B, Gu C S, Zhao E F, et al. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct Control Health Monitor, 2018, 25(6): e2170 doi: 10.1002/stc.2170
      [8] Kang F, Liu J, Li J J, et al. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct Control Health Monitor, 2017, 24(10): e1997 doi: 10.1002/stc.1997
      [9] Gamse S, Oberguggenberger M. Assessment of long-term coordinate time series using hydrostatic-season-time model for rock-fill embankment dam. Struct Control Health Monitor, 2017, 24(1): e1859 doi: 10.1002/stc.1859
      [10] Gamse S, Henriques M J, Oberguggenberger M, et al. Analysis of periodicities in long-term displacement time series in concrete dams. Struct Control Health Monitor, 2020, 27(3): e2477
      [11] Liu X, Wu Z R, Yang Y, et al. Information fusion diagnosis and early-warning method for monitoring the long-term service safety of high dams. J Zhejiang Univ Sci A Appl Phys Eng, 2012, 13(9): 687 doi: 10.1631/jzus.A1200122
      [12] He J P, Ma C B, Shi Y Q. Multi-effect-quantity fusion model of high arch dam based on improved D-S evidence theory. Geomat Inf Sci Wuhan Univ, 2012, 37(12): 1397

      何金平, 馬傳彬, 施玉群. 高拱壩多效應量改進型D-S證據理論融合模型. 武漢大學學報(信息科學版), 2012, 37(12):1397
      [13] Su H Z, Wen Z P, Sun X R, et al. Multisource information fusion-based approach diagnosing structural behavior of dam engineering. Struct Control Health Monitor, 2018, 25(2): e2073 doi: 10.1002/stc.2073
      [14] Yu H, Wu Z R, Bao T F, et al. Multivariate analysis in dam monitoring data with PCA. Sci China Technol Sci, 2010, 53(4): 1088 doi: 10.1007/s11431-010-0060-1
      [15] He J P. Theory and Application of Dam Safety Monitoring. Beijing: China Water & Power Press, 2010

      何金平. 大壩安全監測理論與應用. 北京: 中國水利水電出版社, 2010
      [16] H?rdle W K, Simar L. Applied Multivariate Statistical Analysis. Upper Saddle River: Springer-Verlag Berlin Heidelberg, 2015
      [17] Sun W Z, Yin X D, Li S J. A new navigation data fusion method based on entropy coefficient algorithm for underwater vehicles. Geomat Inf Sci Wuhan Univ, 2018, 43(10): 1465

      孫文舟, 殷曉冬, 李樹軍. 基于熵權重的水下載體導航信息融合方法. 武漢大學學報(信息科學版), 2018, 43(10):1465
      [18] Liu H X, Yuan Y M, Zhou P, et al. Normal cloud model for condition evaluation of wind turbines based on fusion theory. Acta Energ Sol Sin, 2018, 39(10): 2891

      劉華新, 苑一鳴, 周沛, 等. 基于融合理論的風電機組狀態評價正態云模型. 太陽能學報, 2018, 39(10):2891
      [19] Du J, Sun M Y. Hierarchical assessment method of transformer condition based on weight-varying grey cloud model. Trans China Electrotech Soc, 2020, 35(20): 4306

      杜江, 孫銘陽. 基于變權灰云模型的變壓器狀態層次評估方法. 電工技術學報, 2020, 35(20):4306
      [20] Zhang M Y, Wang S X, Sun Z Z, et al. Comprehensive evaluation of landslide risks of oil and gas pipelines based on cloud theory. Chin J Eng, 2018, 40(4): 427

      張滿銀, 王生新, 孫志忠, 等. 基于云理論的油氣管道滑坡危險性綜合評價. 工程科學學報, 2018, 40(4):427
      [21] Li L B, Guo X F, Fu J N, et al. Evaluation approach of passenger satisfaction for urban rail transit based on cloud model. J Tongji Univ Nat Sci, 2019, 47(3): 378

      李林波, 郭曉凡, 傅佳楠, 等. 基于云模型的城市軌道交通乘客滿意度評價. 同濟大學學報(自然科學版), 2019, 47(3):378
      [22] Li S S, Cui T J, Ma Y D, et al. Cloud similarity based on the envelope and its application to the safety assessment. J Saf Environ, 2017, 17(4): 1267

      李莎莎, 崔鐵軍, 馬云東, 等. 基于包絡線的云相似度及其在安全評價中的應用. 安全與環境學報, 2017, 17(4):1267
      [23] Wang J, Zhu J J, Liu X D. An integrated similarity measure method for normal cloud model based on shape and distance. System Eng Theory Pract, 2017, 37(3): 742 doi: 10.12011/1000-6788(2017)03-0742-10

      汪軍, 朱建軍, 劉小弟. 兼顧形狀-距離的正態云模型綜合相似度測算. 系統工程理論與實踐, 2017, 37(3):742 doi: 10.12011/1000-6788(2017)03-0742-10
      [24] Li H L, Guo C H, Qiu W R. Similarity measurement between normal cloud models. Acta Electron Sin, 2011, 39(11): 2561

      李海林, 郭崇慧, 邱望仁. 正態云模型相似度計算方法. 電子學報, 2011, 39(11):2561
      [25] Kao C Y, Loh C H. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct Control Health Monitor, 2013, 20(3): 282 doi: 10.1002/stc.492
      [26] Li T L, He A N, Shao J, et al. Copula-based model for hot-rolling back-up roll health prediction. Chin J Eng, 2020, 42(6): 787

      李天倫, 何安瑞, 邵健, 等. 基于Copula函數的熱軋支持輥健康狀態預測模型. 工程科學學報, 2020, 42(6):787
      [27] Fu L W, Wu S. A new internal clustering validation index for categorical data based on concentration of attribute values. Chin J Eng, 2019, 41(5): 682

      傅立偉, 武森. 基于屬性值集中度的分類數據聚類有效性內部評價指標. 工程科學學報, 2019, 41(5):682
      [28] Xu B, Li Z C, Huang Z H, et al. Cloud model diagnosis method of concrete dam crack behavior abnormality. Sci Sin Technol, 2015, 45(11): 1218 doi: 10.1360/N092014-00195

      徐波, 李占超, 黃志洪, 等. 混凝土壩裂縫轉異診斷的云模型法. 中國科學(技術科學), 2015, 45(11):1218 doi: 10.1360/N092014-00195
    • 加載中
    圖(7) / 表(7)
    計量
    • 文章訪問數:  1156
    • HTML全文瀏覽量:  700
    • PDF下載量:  55
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-10-15
    • 網絡出版日期:  2020-12-11
    • 刊出日期:  2022-01-08

    目錄

      /

      返回文章
      返回