• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究

    吳世超 孫體昌 寇玨 李小輝

    吳世超, 孫體昌, 寇玨, 李小輝. 高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究[J]. 工程科學學報, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
    引用本文: 吳世超, 孫體昌, 寇玨, 李小輝. 高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究[J]. 工程科學學報, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
    WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
    Citation: WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002

    高磷鮞狀鐵礦直接還原?磁選提鐵降磷擴大試驗研究

    doi: 10.13374/j.issn2095-9389.2020.11.29.002
    基金項目: 國家重點研發計劃資助項目(2021YFC2902404);國家自然科學基金資助項目(51874017)
    詳細信息
      通訊作者:

      E-mail: suntichang@163.com

    • 中圖分類號: TD925

    Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation

    More Information
    • 摘要: 為給回轉窯工業試驗提供參數,以小型試驗最佳結果為基礎,進行了高磷鮞狀鐵礦煤基直接還原?磁選提鐵降磷擴大試驗。結果表明,在最佳的條件下可獲得鐵品位94.17%、鐵回收率77.47%以及磷質量分數0.08%的粉末還原鐵,推薦的回轉窯工業試驗初始條件為:石灰石用量(質量分數)28%、無煙煤用量(質量分數)16%、還原溫度1300 ℃,還原時間3 h。采用XRD以及SEM-EDS研究了無煙煤的作用機理,發現無煙煤用量增加,促進了浮氏體、鎂鐵尖晶石的還原以及鐵顆粒長大,從而提高了鐵的回收效果,但過多的無煙煤通過增強還原氣氛及其帶入的灰分消耗了石灰石,使鐵礦物中的磷以及磷灰石還原成單質磷并與鐵顆粒形成鐵磷合金。

       

    • 圖  1  試樣的XRD譜圖

      Figure  1.  X-ray diffraction pattern of the sample

      圖  2  還原焙燒?磁選工藝試驗程序

      Figure  2.  Experimental procedure for the reduction roasting–magnetic separation process

      圖  3  (a)反應(1)~(9)的ΔGT的關系;(b) 鐵、磷礦物還原與C氣化的平衡圖

      Figure  3.  (a) Relationship between ΔG and T of reactions (1)–(9); (b) equilibrium diagram of iron and phosphorus mineral reduction and carbon gasification

      圖  4  無煙煤用量對粉末還原鐵指標的影響

      Figure  4.  Effect of anthracite dosages on the indices of powdered reduced iron

      圖  5  還原溫度對粉末還原鐵指標的影響

      Figure  5.  Effect of reduction temperature on the indices of powdered reduced iron

      圖  6  還原時間對粉末還原鐵指標的影響

      Figure  6.  Effect of reduction time on the indices of powdered reduced iron

      圖  7  不同無煙煤用量下焙燒礦的XRD圖譜

      Figure  7.  X-ray diffraction patterns of roasted ores with different anthracite dosages

      圖  8  不同無煙煤用量下焙燒礦的SEM圖和EDS分析。(a)16%;(b)18%;(c)20%;(d)圖(a)中點1的能譜圖;(e)圖(b)中點2的能譜圖;(f)圖(c)中點3的能譜圖

      Figure  8.  SEM images and EDS analyses of roasted ores with different anthracite dosages: (a) 16%; (b) 18%; (c) 20%; (d) energy spectrum of point 1 in Fig.(a); (e) energy spectrum of point 2 in Fig.(b); (f) energy spectrum of point 3 in Figs.(c)

      圖  9  不同無煙煤用量下磷的遷移行為

      Figure  9.  Migration behavior of phosphorus under different anthracite dosages

      表  1  試樣的化學成分(質量分數)

      Table  1.   Chemical composition of the sample %

      TFeSiO2Al2O3CaOMgOK2OPSMnOLOI
      55.656.714.802.130.370.0340.560.0160.224.93
      下載: 導出CSV

      表  2  試樣中鐵的物相分析

      Table  2.   Distributions of iron in the mineral phases of the sample

      PhaseMass fraction of minerals /
      %
      Distribution of iron in minerals/%
      Magnetite30.1254.29
      Martite11.4420.73
      Hematite13.4324.14
      Siderite0.430.77
      Ferrosilite0.020.03
      Iron sulfide0.020.04
      Total55.55100
      下載: 導出CSV

      表  3  試樣中磷的物相分析

      Table  3.   Distributions of phosphorous in the mineral phases of the sample

      PhaseMass fraction of minerals /%Distribution of iron in minerals/%
      Apatite0.2950.88
      Phosphorous in the iron-bearing phase0.2442.10
      Others0.037.02
      Total0.56100
      下載: 導出CSV

      表  4  粉末還原鐵的化學組成(質量分數)

      Table  4.   Chemical compositions of the powdered reduced iron %

      FeMFePCaOSiO2Al2O3MgOMnOCS
      94.1792.270.0801.481.130.640.120.0460.490.02
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wu S C, Li Z Y, Sun T C, et al. Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore. Int J Miner Metall Mater, 2021, 28(12): 1908 doi: 10.1007/s12613-021-2329-8
      [2] Bao Q P, Guo L, Guo Z C. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol, 2021, 377: 149 doi: 10.1016/j.powtec.2020.08.066
      [3] Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3
      [4] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
      [5] Quast K. A review on the characterisation and processing of oolitic iron ores. Miner Eng, 2018, 126: 89 doi: 10.1016/j.mineng.2018.06.018
      [6] Zhu D Q, Chun T J, Pan J, et al. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int J Miner Metall Mater, 2013, 20(6): 505 doi: 10.1007/s12613-013-0758-8
      [7] Yu W, Sun T C, Kou J, et al. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int, 2013, 53(3): 427 doi: 10.2355/isijinternational.53.427
      [8] Li G H, Zhang S H, Rao M J, et al. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. Int J Miner Process, 2013, 124: 26 doi: 10.1016/j.minpro.2013.07.006
      [9] Rao M J, Ouyang C Z, Li G H, et al. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int J Miner Process, 2015, 143: 72 doi: 10.1016/j.minpro.2015.09.002
      [10] Li Y L, Sun T C, Xu C Y, et al. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J Central South Univ (Sci Technol), 2012, 43(3): 827

      李永利, 孫體昌, 徐承焱, 等. 高磷鮞狀赤鐵礦直接還原同步脫磷新脫磷劑. 中南大學學報(自然科學版), 2012, 43(3):827
      [11] Xu C Y, Sun T C, Qi C Y, et al. Effects of reductants on direct reduction and synchronous dephosphorization of high-phosphorous oolitic hematite. Chin J Nonferrous Met, 2011, 21(3): 680

      徐承焱, 孫體昌, 祁超英, 等. 還原劑對高磷鮞狀赤鐵礦直接還原同步脫磷的影響. 中國有色金屬學報, 2011, 21(3):680
      [12] Yu W, Tang Q Y, Chen J A, et al. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. Int J Miner Metall Mater, 2016, 23(10): 1126 doi: 10.1007/s12613-016-1331-z
      [13] Zhang Y Y, Xue Q G, Wang G, et al. Phosphorus-containing mineral evolution and thermodynamics of phosphorus vaporization during carbothermal reduction of high-phosphorus iron ore. Metals, 2018, 8(6): 451 doi: 10.3390/met8060451
      [14] Sun Y S, Han Y X, Wei X C, et al. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim, 2016, 123(1): 703 doi: 10.1007/s10973-015-4863-y
      [15] Sun Y S, Han Y X, Gao P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 2015, 143: 87 doi: 10.1016/j.minpro.2015.09.005
      [16] Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6
      [17] Sun Y S, Han Y X, Gao P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater, 2014, 21(4): 331 doi: 10.1007/s12613-014-0913-x
      [18] Li Y F, Han Y X, Sun Y S, et al. Growth behavior and size characterization of metallic iron particles in coal-based reduction of oolitic hematite–coal composite briquettes. Minerals, 2018, 8(5): 177 doi: 10.3390/min8050177
      [19] Sun Y S, Han Y X, Li Y F, et al. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int J Miner Metall Mater, 2017, 24(2): 123 doi: 10.1007/s12613-017-1386-5
      [20] Hu J G, Wu M Q, Mao Y L. Latest development of direct reduction processes of iron ores. Res Iron Steel, 2006, 34(2): 53 doi: 10.3969/j.issn.1001-1447.2006.02.014

      胡俊鴿, 吳美慶, 毛艷麗. 直接還原煉鐵技術的最新發展. 鋼鐵研究, 2006, 34(2):53 doi: 10.3969/j.issn.1001-1447.2006.02.014
      [21] Cao Z C, Sun T C, Xue X, et al. Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process. Minerals, 2016, 6(4): 119 doi: 10.3390/min6040119
      [22] Chu M S, Zhao Q J. Present status and development perspective of direct reduction and smelting reduction in China. China Metall, 2008, 18(9): 1 doi: 10.3969/j.issn.1006-9356.2008.09.001

      儲滿生, 趙慶杰. 中國發展非高爐煉鐵的現狀及展望. 中國冶金, 2008, 18(9):1 doi: 10.3969/j.issn.1006-9356.2008.09.001
      [23] Liang Z K, Yi L Y, Huang Z C, et al. A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores. ACS Sustain Chem Eng, 2019, 7(22): 18726 doi: 10.1021/acssuschemeng.9b05423
      [24] Ma B Z, Yang W J, Xing P, et al. Pilot-scale plant study on solid-state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process, 2017, 169: 99 doi: 10.1016/j.minpro.2017.11.002
      [25] Wu S C, Sun T C, Yang H F. Study on phosphorus removal of high-phosphorus oolitic hematite abroad by direct reduction and magnetic separation. Met Mine, 2019(11): 109

      吳世超, 孫體昌, 楊慧芬. 國外某高磷鮞狀赤鐵礦直接還原?磁選降磷研究. 金屬礦山, 2019(11):109
      [26] Yang M, Zhu Q S, Fan C L, et al. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int J Miner Metall Mater, 2015, 22(4): 346 doi: 10.1007/s12613-015-1079-x
      [27] Huang W S, Yan L, Wu S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad. Met Mine, 2020(9): 137

      黃武勝, 延黎, 吳世超, 等. 國外某高磷鮞狀鐵礦石工藝礦物學研究. 金屬礦山, 2020(9):137
      [28] Guo Z Q, Zhu D Q, Pan J, et al. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod, 2018, 187: 910 doi: 10.1016/j.jclepro.2018.03.264
      [29] Zhu D Q, Xu J W, Guo Z Q, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod, 2020, 250: 119462 doi: 10.1016/j.jclepro.2019.119462
    • 加載中
    圖(9) / 表(4)
    計量
    • 文章訪問數:  824
    • HTML全文瀏覽量:  373
    • PDF下載量:  62
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-11-29
    • 網絡出版日期:  2021-02-05
    • 刊出日期:  2022-05-25

    目錄

      /

      返回文章
      返回