• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于深度學習的行人重識別方法綜述

    李擎 胡偉陽 李江昀 劉艷 李夢璇

    李擎, 胡偉陽, 李江昀, 劉艷, 李夢璇. 基于深度學習的行人重識別方法綜述[J]. 工程科學學報, 2022, 44(5): 920-932. doi: 10.13374/j.issn2095-9389.2020.12.22.004
    引用本文: 李擎, 胡偉陽, 李江昀, 劉艷, 李夢璇. 基于深度學習的行人重識別方法綜述[J]. 工程科學學報, 2022, 44(5): 920-932. doi: 10.13374/j.issn2095-9389.2020.12.22.004
    LI Qing, HU Wei-yang, LI Jiang-yun, LIU Yan, LI Meng-xuan. A survey of person re-identification based on deep learning[J]. Chinese Journal of Engineering, 2022, 44(5): 920-932. doi: 10.13374/j.issn2095-9389.2020.12.22.004
    Citation: LI Qing, HU Wei-yang, LI Jiang-yun, LIU Yan, LI Meng-xuan. A survey of person re-identification based on deep learning[J]. Chinese Journal of Engineering, 2022, 44(5): 920-932. doi: 10.13374/j.issn2095-9389.2020.12.22.004

    基于深度學習的行人重識別方法綜述

    doi: 10.13374/j.issn2095-9389.2020.12.22.004
    基金項目: 中央高校基本科研業務費專項資金資助項目(FRF-DF-19-002);北京科技大學順德研究生院科技創新專項資金資助項目(BK20BE014)
    詳細信息
      通訊作者:

      E-mail: leejy@ustb.edu.cn

    • 中圖分類號: TG183

    A survey of person re-identification based on deep learning

    More Information
    • 摘要: 對深度學習在行人重識別領域的應用現狀進行總結與評價。首先,對行人重識別進行介紹,包括行人重識別的應用場景、數據集與評價指標,并對基于深度學習的行人重識別的基本方法進行總結。之后,針對行人重識別的研究現狀,將近年來國內外學者的研究工作歸納為基于局部特征、基于生成對抗網絡、基于視頻以及基于重排序4個方向,并對每個方向所使用的方法分別進行梳理、性能對比以及總結。最后,對行人重識別領域現存的問題進行了分析與討論,并探討了行人重識別未來的發展方向。

       

    • 圖  1  行人重識別的應用場景示例

      Figure  1.  An example of person re-identification application scenarios

      圖  2  基于深度學習的行人重識別研究問題與方法歸納

      Figure  2.  Research problems and methods of person re-identification based on deep learning

      圖  3  行人重識別研究方法框架

      Figure  3.  Research method framework of person re-identification methods

      圖  4  采取固定分塊方式的局部特征提取方法[46]

      Figure  4.  Local feature extraction method based on fixed blocks[46]

      圖  5  視頻幀序列的時序信息融合方法[77]

      Figure  5.  Temporal information fusion of video frames sequence[77]

      表  1  部分行人重識別公開數據集

      Table  1.   Part of person re-identification public datasets

      DatasetCamera numbersID numbersImage numbersBody images
      Market-1501[4]6150132668DPM
      DukeMTMC-reID [5]8181236411Hand
      MSMT17[9]154101126441Faster RCNN
      CUHK03[3]2146714096Hand
      LPW[10]112731562438DPM+Hand
      COCAS[11]30526662382Hand
      下載: 導出CSV

      表  2  部分行人重識別視頻數據集

      Table  2.   Part of person re-identification video datasets

      DatasetCamera numbersID numbersSequence lengthBody images
      PRID2011[7]2200400Hand
      DukeMTMC VideoReID[15]67024832
      iLIDS-VID [8]2300600Hand
      MARS[16]6126120715DPM+GMMCP
      EgoReID[17]390010200YOLO9000+
      FSDSC
      LS-VID[18]15377214943Faster R-CNN
      下載: 導出CSV

      表  3  各數據集的性能最優模型以及精度數據

      Table  3.   State-of-the-art models and their precision for each dataset

      DatasetSOTARank-1 accuracymAP
      Market-1501[4]St-ReID(RE, RK)[20]97.2086.70
      Viewpoint-Aware Loss[21]96.7995.43
      DG-Net[22]94.8084.00
      DukeMTMC-reID[5]St-ReID(RE, RK, Cam)[20]94.5092.70
      ABD-Net(ResNet-50)[23]89.0078.95
      Viewpoint-Aware Loss[21]93.9091.80
      CUHK03[3,6]FD-GAN[19]92.6091.30
      OSNet[24]67.80
      DG-Net[22]61.10
      MSMT17[9] ABD-Net(ResNet-50)[23]82.3060.80
      OSNet[24]78.7052.90
      DG-Net[22]77.2052.30
      下載: 導出CSV

      表  4  基于局部特征的行人重識別方法的性能表現

      Table  4.   Performance of person re-identification method based on local feature

      MethodsYearMarket-1501 DukeMTMC-reID CUHK03
      Rank-1mAP Rank-1mAP Rank-1mAP
      PCB+RPP[46]201893.881.6 83.369.2 63.757.5
      SPReID+re-ranking[48]201894.690.988.984.9
      RNLSTMA[54]201990.376.477.062.186.183.6
      mGD+ RNLSTMA[56]202091.377.980.863.988.084.2
      SMC-ReID[49]202095.393.0
      HOReID[53]202094.284.986.975.6
      ISP[50]202095.388.689.680.0
      下載: 導出CSV

      表  5  基于生成對抗網絡的行人重識別方法的性能表現

      Table  5.   Performance of person re-identification method based on GAN

      MethodsYearMarket-1501 DukeMTMC CUHK03
      Rank-1mAP Rank-1mAP Rank-1mAP
      DCGAN+LSRO[59]2017 84.687.4
      IDE+CamStyle+RE[62]201889.571.678.358.6
      Pose-Transfer[9]201887.768.978.556.945.142.0
      PNGAN[67]201889.472.673.653.279.8
      PCB+UnityGAN[66]202095.893.689.396.2
      st-ReID+UnityGAN[66]202098.595.895.193.6
      下載: 導出CSV

      表  6  基于視頻的的行人重識別方法的性能表現

      Table  6.   Performance of video-based person re-identification method

      MethodsYearRank-1 MARS DukeMTMC VideoReID[15]
      PRID2011[7]iLIDS-VID[8] Rank-1mAP Rank-1mAP
      CNN+RNN+Temporal Pooling[77]201670.058.0
      Deep RCN[78]+KISSME201669.046.1
      RFA-Net[80]201658.249.3
      SCAN+ResNet50[81]201892.081.386.676.7
      ResNet3D-50+Non-Local[82]201891.281.384.377.0
      Spatial Attention+Temporal Attention[83]201893.280.282.365.8
      AP3D[84]202086.790.185.196.395.6
      STCNet[86]202083.488.582.395.093.5
      MGH[88]202094.885.690.085.8
      下載: 導出CSV
      中文字幕在线观看
    • [1] Ye M, Shen J B, Lin G J, et al. Deep learning for person re-identification: a survey and outlook [J/OL]. Arxiv Perprint (2020-01-13) [2020-12-22]. https://arxiv.org/abs/2001.04193
      [2] Karanam S, Gou M R, Wu Z Y, et al. A systematic evaluation and benchmark for person re-identification: Features, metrics, and datasets. IEEE Trans Pattern Anal Mach Intell, 2019, 41(3): 523 doi: 10.1109/TPAMI.2018.2807450
      [3] Li W, Zhao R, Xiao T, et al. DeepReID: Deep filter pairing neural network for person re-identification // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, 2014: 152
      [4] Zheng L, Shen L, Tian L, et al. Scalable person re-identification: a Benchmark // 2015 IEEE International Conference on Computer Vision. Santiago, 2015: 1116
      [5] Zheng Z D, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 3774
      [6] Zhong Z, Zheng L, Cao D L, et al. Re-ranking person re-identification with k-reciprocal encoding // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 3652
      [7] Hirzer M, Beleznai C, Roth P M, et al. Person re-identification by descriptive and discriminative classification // Scandinavian Conference on Image Analysis. Ystad Sal, 2011: 91
      [8] Wang T Q, Gong S G, Zhu X T, et al. Person re-identification by discriminative selection in video ranking. IEEE Trans Pattern Anal Mach Intell, 2016, 38(12): 2501 doi: 10.1109/TPAMI.2016.2522418
      [9] Wei L H, Zhang S L, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 79
      [10] Song G L, Leng B, Liu Y, et al. Region-based quality estimation network for large-scale person re-identification [J/OL]. Arxiv Perprint (2017-11-23) [2020-12-22]. https://arxiv.org/abs/1711.08766
      [11] Yu S J, Li S H, Chen D P, et al. COCAS: A large-scale clothes changing person dataset for Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 3397
      [12] Wang G R, Wang G C, Zhang X J, et al. Weakly supervised person Re-ID: Differentiable graphical learning and a new benchmark [J/OL]. arXiv preprint arXiv (2019-04-08) [2020-12-22]. https://arxiv.org/abs/1904.03845
      [13] Wang Y N, Liao S C, Shao L. Surpassing real-world source training data: Random 3D characters for generalizable person re-identification // Proceedings of the 28th ACM International Conference on Multimedia. Seattle, 2020: 3422
      [14] Xu B Q, He L X, Liao X Y, et al. Black Re-ID: A Head-shoulder descriptor for the challenging problem of person re-identification // Proceedings of the 28th ACM International Conference on Multimedia. Seattle, 2020: 673
      [15] Wu Y, Lin Y T, Dong X Y, et al. Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 5177
      [16] Zheng L, Bie Z, Sun Y, et al. Mars: A video benchmark for large-scale person re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 868
      [17] Basaran E, Tesfaye Y T, Shah M. EgoReID Dataset: Person re-identification in videos acquired by mobile devices with first-person point-of-view [J/OL]. arXiv preprint arXiv (2018-12-22) [2020-12-22].https://arxiv.org/abs/1812.09570
      [18] Li J, Wang J, Tian Q, et al. Global-local temporal representations for video person re-identification // Proceedings of the IEEE International Conference on Computer Vision. Seoul, 2019: 3958
      [19] Ge Y X, Li Z W, Zhao H Y, et al. FD-GAN: Pose-guided feature distilling GAN for robust person re-identification. [J/OL]. arXiv preprint arXiv (2018-10-06) [2021-5-5]. https://arxiv.org/abs/1810.02936
      [20] Wang G C, Lai J H, Huang P G, et al. Spatial-temporal person re-identification // Proceedings of the AAAI conference on artificial intelligence. Hawaii, 2019, 33(1): 8933
      [21] Zhu Z H, Jiang X Y, Zheng F, et al. Viewpoint-aware loss with angular regularization for person re-identification [J/OL]. arXiv preprint arXiv (2019-12-03) [2020-12-22]. https://arxiv.org/abs/1912.01300v1
      [22] Zheng Z D, Yang X D, Yu Z D, et al. Joint discriminative and generative learning for person Re-identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 2133
      [23] Chen T L, Ding S J, Xie J Y, et al. ABD-net: Attentive but diverse person Re-identification // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 8350
      [24] Zhou K Y, Yang Y X, Cavallaro A, et al. Omni-scale feature learning for person re-identification // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 3701
      [25] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 1
      [26] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
      [27] Huang G, Liu Z, Der Maaten L V, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2261
      [28] Filkovi? I, Kalafati? Z, Hrka? T. Deep metric learning for person re-identification and de-identification // 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics. Opatija, 2016: 1360
      [29] Yi D, Lei Z, Liao S C, et al. Deep metric learning for person Re-identification // 2014 22nd International Conference on Pattern Recognition. Stockholm, 2014: 34
      [30] Ahmed E, Jones M, Marks T K. An improved deep learning architecture for person re-identification // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 3908
      [31] Wu L, Shen C H, Hengel A V D. PersonNet: Person re-identification with deep convolutional neural networks [J/OL]. Arxiv Perprint (2016-01-27) [2020-12-22]. https://arxiv.org/abs/1601.07255
      [32] Wang Y C, Chen Z Z, Wu F, et al. Person re-identification with cascaded pairwise convolutions // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1470
      [33] Wang F Q, Zuo W M, Lin L, et al. Joint learning of single-image and cross-image representations for person re-identification // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1288
      [34] Xiong W, Xiong Z J, Yang D C, et al. Pedestrian re-identification based on deep feature fusion. Comput Eng Sci, 2020, 42(2): 358 doi: 10.3969/j.issn.1007-130X.2020.02.022

      熊煒, 熊子婕, 楊荻椿, 等. 基于深層特征融合的行人重識別方法. 計算機工程與科學, 2020, 42(2):358 doi: 10.3969/j.issn.1007-130X.2020.02.022
      [35] Xiong W, Yang D C, Xiong Z J, et al. Person re-identification algorithm based on global feature stitching. Appl Res Comput, 2021, 38(1): 316

      熊煒, 楊荻椿, 熊子婕, 等. 基于全局特征拼接的行人重識別算法研究. 計算機應用研究, 2021, 38(1):316
      [36] Chen W, Chen X, Zhang J, et al. A Multi-task deep network for person re-identification // Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, 2017: 3988
      [37] Chen H R, Wang Y W, Shi Y M, et al. Deep transfer learning for person Re-identification // 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). Xi'an, 2018: 1
      [38] Ding S Y, Lin L, Wang G R, et al. Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit, 2015, 48(10): 2993 doi: 10.1016/j.patcog.2015.04.005
      [39] Shi H L, Yang Y, Zhu X Y, et al. Embedding deep metric for person re-identification: A study against large variations // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 732
      [40] Su C, Zhang S L, Xing J L, et al. Deep attributes driven multi-camera person re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 475
      [41] Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 815
      [42] Hermans A, Beyer L, Leibe B, et al. In defense of the triplet loss for person re-identification [J/OL]. Arxiv Perprint (2017-03-22) [2020-12-22].https://arxiv.org/abs/1703.07737
      [43] Cheng D, Gong Y H, Zhou S P, et al. Person re-identification by multi-channel parts-based CNN with improved triplet loss function // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1335
      [44] Chen W H, Chen X T, Zhang J G, et al. Beyond triplet loss: A deep quadruplet network for person Re-identification // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1320
      [45] Luo H, Gu Y Z, Liao X Y, et al. Bag of tricks and a strong baseline for deep person Re-identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, 2019: 1487
      [46] Sun Y F, Zheng L, Yang Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) // Proceedings of the European Conference on Computer Vision. Munich, 2018: 501
      [47] Li D W, Chen X T, Zhang Z, et al. Learning deep context-aware features over body and latent parts for person Re-identification // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 7398
      [48] Kalayeh M M, Basaran E, G?kmen M, et al. Human semantic parsing for person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1062
      [49] Xu L Z, Peng L, Zhu F Z. Pedestrian re-identification method based on multi-task pyramid overlapping matching. Comput Eng, 2021, 47(1): 239

      徐龍壯, 彭力, 朱鳳增. 多任務金字塔重疊匹配的行人重識別方法. 計算機工程, 2021, 47(1):239
      [50] Zhu K, Guo H Y, Liu Z W, et al. Identity-guided human semantic parsing for person re-identification [J/OL]. ArXiv Preprint (2020-07-27) [2020-12-22].https://arxiv.org/abs/2007.13467
      [51] Zhao L M, Li X, Zhuang Y T, et al. Deeply-learned part-aligned representations for person re-identification // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 3239
      [52] Dong Y C, Liu H Z, Xu C. Person re-identification method based on saliency multi-scale feature collaborative fusion [J/OL]. Computr Engineering, https://doi.org/10.19678/j.issn.1000-3428.0057938

      董亞超, 劉宏哲, 徐成. 基于顯著性多尺度特征協作融合的行人重識別方法[J/OL]. 計算機工程, https://doi.org/10.19678/j.issn.1000-3428.0057938
      [53] Wang G A, Yang S, Liu H Y, et al. High-order information matters: Learning relation and topology for occluded person Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 6448
      [54] Yang W X, Yan Y, Chen S. Adaptive deep metric embeddings for person re-identification under occlusions. Neurocomputing, 2019, 340: 125 doi: 10.1016/j.neucom.2019.02.042
      [55] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
      [56] Varior R R, Haloi M, Wang G, et al. Gated Siamese convolutional neural network architecture for human re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 791
      [57] Yang W X, Yan Y, Chen S, et al. Multi-scale generative adversarial network for person Re-identification under occlusion. J Softw, 2020, 31(7): 1943

      楊婉香, 嚴嚴, 陳思, 等. 基于多尺度生成對抗網絡的遮擋行人重識別方法. 軟件學報, 2020, 31(7):1943
      [58] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets // Conference and Workshop on Neural Information Processing Systems. Montreal, 2014: 2672
      [59] Radford A, Metz L, Chintala S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks [J/OL]. Arxiv Preprint (2015-11-19) [2020-12-22]. https//arxiv. org/abs/1511.06434
      [60] Zhong Z, Zheng L, Zheng Z D, et al. Camera style adaptation for person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 5157
      [61] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 2242
      [62] Deng W J, Zheng L, Ye Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 994
      [63] Li Y T, Xue R N, Zhu M M, et al. ReadNet: Towards accurate ReID with limited and noisy samples [J/OL]. ArXiv Preprint (2020-05-12) [2020-12-22].https://arxiv.org/abs/2005.05740
      [64] Zhai Y P, Lu S J, Ye Q X, et al. AD-cluster: Augmented discriminative clustering for domain adaptive person re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 9018
      [65] Zhang X W, Lü M Q, Li H. Cross-domain person re-identification based on partial semantic feature invariance. J Beijing Univ Aeronaut Astronaut, 2020, 46(9): 1682

      張曉偉, 呂明強, 李慧. 基于局部語義特征不變性的跨域行人重識別. 北京航空航天大學學報, 2020, 46(9):1682
      [66] Liu C, Chang X J, Shen Y D. Unity style transfer for person Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 6886
      [67] Qian X L, Fu Y W, Xiang T, et al. Pose-normalized image generation for person re-identification // Proceedings of the European Conference on Computer Vision. Munich, 2018: 661
      [68] Liu J X, Ni B B, Yan Y C, et al. Pose transferrable person re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 4099
      [69] Cao Z, Simon T, Wei S H, et al. Realtime multi-person 2D pose estimation using part affinity fields // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1302
      [70] Mirza M, Osindero S. Conditional generative adversarial nets [J/OL]. ArXiv Preprint (2014-11-06) [2020-12-22]. https://arxiv.org/abs/1411.1784
      [71] Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features // 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, 2010: 2360
      [72] Kviatkovsky I, Adam A, Rivlin E. Color invariants for person re-identification. IEEE Trans Pattern Anal Mach Intell, 2013, 35(7): 1622 doi: 10.1109/TPAMI.2012.246
      [73] Ma B P, Su Y, Jurie F. Local descriptors encoded by fisher vectors for person re-identification // International Conference on Computer Vision. Barcalona, 2012: 413
      [74] Chen D P, Yuan Z J, Chen B D, et al. Similarity learning with spatial constraints for person re-identification // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1268
      [75] K?stinger M, Hirzer M, Wohlhart P, et al. Large scale metric learning from equivalence constraints // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 2288
      [76] Zaremba W, Sutskever I, Vinyals O, et al. Recurrent neural network regularization [J/OL]. Arxiv Preprint (2014-09-08) [2020-12-22].https://arxiv.org/abs/1409.2329
      [77] McLaughlin N, Rincon J M, Miller P. Recurrent convolutional network for video-based person Re-identification // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1325
      [78] Wu L, Shen C H, Den Hengel A, et al. Deep recurrent convolutional networks for video-based person re-identification: An end-to-end approach [J/OL]. ArXiv Preprint (2014-06-11) [2020-12-22].https://arxiv.org/abs/1606.01609v2
      [79] Cho K, Van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J/OL]. ArXiv Preprint (2014-06-03) [2020-12-22]. https://arxiv.org/abs/1406.1078
      [80] Yan Y C, Ni B B, Song Z C, et al. Person re-identification via recurrent feature aggregation // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 701
      [81] Zhang R M, Li J Y, Sun H B, et al. SCAN: Self-and-collaborative attention network for video person re-identification. IEEE Trans Image Process, 2019, 28(10): 4870 doi: 10.1109/TIP.2019.2911488
      [82] Liao X Y, He L X, Yang Z W, et al. Video-based person re-identification via 3D convolutional networks and non-local attention // Asian Conference on Computer Vision. Perth, 2018: 620
      [83] Li S, Bak S, Carr P, et al. Diversity regularized spatiotemporal attention for video-based person re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 369
      [84] Gu X Q, Chang H, Ma B P, et al. Appearance-preserving 3D convolution for video-based person re-identification // Proceedings of the European Conference on Computer Vision. Glasgow, 2020: 228
      [85] Feng Y, Wang Y, Luo J B, et al. Video-based person re-identification using gated convolutional recurrent neural networks [J/OL]. ArXiv Preprint (2020-03-21) [2020-12-22]. https://arxiv.org/abs/2003.09717
      [86] Hou R B, Ma B P, Chang H, et al. VRSTC: Occlusion-free video person Re-identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 7176
      [87] Gao S, Wang J Y, Lu H C, et al. Pose-guided visible part matching for occluded person ReID // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 11741
      [88] Yan Y C, Qin J, Chen J X, et al. Learning multi-granular hypergraphs for video-based person re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 2896
      [89] Zhang Z Z, Lan C L, Zeng W J, et al. Multi-granularity reference-aided attentive feature aggregation for video-based person Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 10404
      [90] Liu J, Zha Z, Zhu X, et al. Co-saliency spatio-temporal interaction network for person re-identification in videos [J/OL]. ArXiv Preprint (2020-05-11) [2020-12-22]. https://arxiv.org/abs/2004.04979
      [91] Shen X, Lin Z, Brandt J, et al. Object retrieval and localization with spatially-constrained similarity measure and k-nn re-ranking // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 3013
      [92] Li W, Wu Y, Mukunoki M, et al. Common-near-neighbor analysis for person re-identification // 2012 19th IEEE International Conference on Image Processing. Orlando, , 2012: 1621
      [93] Ye M, Chen J, Leng Q M, et al. Coupled-view based ranking optimization for person re-identification // International Conference on Multimedia Modeling. Kaiserslautern, 2015: 105
      [94] Wang H X, Gong S G, Zhu X T, et al. Human-in-the-loop person re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 405
      [95] Sarfraz M S, Schumann A, Eberle A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood Re-ranking // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 420
    • 加載中
    圖(5) / 表(6)
    計量
    • 文章訪問數:  1249
    • HTML全文瀏覽量:  729
    • PDF下載量:  287
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2020-12-22
    • 網絡出版日期:  2021-11-24
    • 刊出日期:  2022-05-25

    目錄

      /

      返回文章
      返回