• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于深度學習的宮頸癌異常細胞快速檢測方法

    姚超 趙基淮 馬博淵 李莉 馬瑩 班曉娟 姜淑芳 邵炳衡

    姚超, 趙基淮, 馬博淵, 李莉, 馬瑩, 班曉娟, 姜淑芳, 邵炳衡. 基于深度學習的宮頸癌異常細胞快速檢測方法[J]. 工程科學學報, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001
    引用本文: 姚超, 趙基淮, 馬博淵, 李莉, 馬瑩, 班曉娟, 姜淑芳, 邵炳衡. 基于深度學習的宮頸癌異常細胞快速檢測方法[J]. 工程科學學報, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001
    YAO Chao, ZHAO Ji-huai, MA Bo-yuan, LI Li, MA Ying, BAN Xiao-juan, JIANG Shu-fang, SHAO Bing-heng. Fast detection method for cervical cancer abnormal cells based on deep learning[J]. Chinese Journal of Engineering, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001
    Citation: YAO Chao, ZHAO Ji-huai, MA Bo-yuan, LI Li, MA Ying, BAN Xiao-juan, JIANG Shu-fang, SHAO Bing-heng. Fast detection method for cervical cancer abnormal cells based on deep learning[J]. Chinese Journal of Engineering, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001

    基于深度學習的宮頸癌異常細胞快速檢測方法

    doi: 10.13374/j.issn2095-9389.2021.01.12.001
    基金項目: 海南省財政科技計劃資助項目(ZDYF2019009);國家自然科學基金資助項目(61873299,61902022,61972028,6210020684);中央高校基本科研業務費資助項目(FRF-TP-19-015A1,FRF-TP-20-061A1Z,FRF-TP-19-043A2,00007467);佛山市科技創新專項資金資助項目(BK19AE034,BK20AF001,BK21BF002)
    詳細信息
      通訊作者:

      E-mail: jsf0912@aliyun.com

    • 中圖分類號: TP391

    Fast detection method for cervical cancer abnormal cells based on deep learning

    More Information
    • 摘要: 宮頸癌是嚴重危害婦女健康的惡性腫瘤,威脅著女性的生命,而通過基于圖像處理的細胞學篩查是癌前篩查的最為廣泛的檢測方法。近年來,隨著以深度學習為代表的機器學習理論的發展,卷積神經網絡以其強有效的特征提取能力取得了圖像識別領域的革命性突破,被廣泛應用于宮頸異常細胞檢測等醫療影像分析領域。但由于病理細胞圖像具有分辨率高和尺寸大的特點,且其大多數局部區域內都不含有細胞簇,深度學習模型采用窮舉候選框的方法進行異常細胞的定位和識別時,經過窮舉候選框獲得的子圖大部分都不含有細胞簇。當子圖數量逐漸增加時,大量不含細胞簇的圖像作為目標檢測網絡輸入會使圖像分析過程存在冗余時長,嚴重減緩了超大尺寸病理圖像分析時的檢測速度。本文提出一種新的宮頸癌異常細胞檢測策略,針對使用膜式法獲得的病理細胞圖像,通過基于深度學習的圖像分類網絡首先判斷局部區域是否出現異常細胞,若出現則進一步使用單階段的目標檢測方法進行分析,從而快速對異常細胞進行精確定位和識別。實驗表明,本文提出的方法可提高一倍的宮頸癌異常細胞檢測速度。

       

    • 圖  1  本文提出的加速策略的技術路線流程圖(圖中紅色框代表異常細胞)

      Figure  1.  Flow chart of the proposed acceleration strategy (The red box indicates an abnormal cell)

      圖  2  “滑動交疊裁剪”示例

      Figure  2.  Example of “sliding overlap clipping”

      圖  3  YoloV5網絡結構

      Figure  3.  YoloV5 network structure

      圖  4  數據集中部分細胞簇的識別示例。(a,b)正確識別結果;(c)“過檢”識別結果;(d)“漏檢”識別結果

      Figure  4.  Examples of the identification of some cell clusters in datasets: (a,b) correct recognition results; (c) recognition results of "over inspection"; (d) recognition results of "over inspection"

      表  1  圖像標注情況

      Table  1.   Image annotation

      CategoryNumber
      ASC-US2032
      ASC-H1156
      LSIL4387
      HSIL1389
      Total8964
      下載: 導出CSV

      表  2  細胞簇圖像分類實驗

      Table  2.   Cell cluster image classification experiment

      ModelAccuracy/%True negative rate/%True positive rate/%Average time consumption/sParams/MBMemory Cost/GB
      Resnet5089.0196.0986.930.01722.514.12
      Resnet10189.6289.3991.460.02742.507.85
      SE-Resnext5084.5996.0979.900.01627.564.28
      SE-Resnext10182.5091.6279.900.03348.968.05
      Efficientnet-b475.7198.8857.290.02719.435.12
      Efficientnet-b783.4198.8868.840.04366.5225.32
      Resnext50_32X4d88.2594.4188.440.01225.034.29
      Resnext101_32X4d87.2089.9491.460.02544.188.03
      SE-Resnet10182.5092.1879.400.02349.337.63
      SE-Resnet5085.1188.8386.430.01128.093.9
      Nasnet85.3799.4472.360.03888.7524.04
      Shufflenetv281.46099.500.0107.390.60
      Inceptionv481.7299.4400.02442.6812.31
      Xception78.8599.4499.500.01522.868.42
      Densenet12180.5894.4156.280.0217.982.88
      下載: 導出CSV

      表  3  模型推理時間對比實驗

      Table  3.   Comparison experiment for model reasoning time

      Single stage modelTime consumption/sParam/MB Double stage modelsTime consumption/sParam/MB
      Faster RCNN277540.1 Resnet50+Faster RCNN108962.61
      Cascade RCNN287765.9 Resnet50+Cascade RCNN117888.41
      Libra RCNN311841.6 Resnet50+Libra RCNN149664.11
      Tridentnet446933.1 Resnet50+Tridentnet210655.61
      Foveabox243736.0 Resnet50+Foveabox118958.51
      ATSS301431.2 Resnet50+ATSS145053.71
      YoloV5138645.7 Resnet50+YoloV569568.21
      下載: 導出CSV

      表  4  模型識別精度對比實驗

      Table  4.   Comparison experiment for model recognition accuracy

      Single stage modelAP50/%Double stage modelsAP50/%
      Faster RCNN70.1Resnet50+Faster RCNN66.8
      Cascade RCNN69.2Resnet50+Cascade RCNN65.7
      Libra RCNN68.3Resnet50+Libra RCNN67.0
      Tridentnet65.7Resnet50+Tridentnet59.7
      Foveabox67.3Resnet50+Foveabox61.9
      ATSS63.8Resnet50+ATSS63.5
      YoloV575.3Resnet50+YoloV570.1
      下載: 導出CSV
      中文字幕在线观看
    • [1] Ma D, Xi L. Special discussion on cervical cancer: Research Progress in epidemiology and etiology of cervical cancer. J Pract Obstet Gynecol, 2001, 17(2): 61 doi: 10.3969/j.issn.1003-6946.2001.02.001

      馬丁, 奚玲. 宮頸癌專題討論——宮頸癌流行病學及病因學研究進展. 實用婦產科雜志, 2001, 17(2):61 doi: 10.3969/j.issn.1003-6946.2001.02.001
      [2] Li C C, Zhu L. The cause of cervical cancer and the status of cervical cancer vaccine. J Mod Oncol, 2018, 26(20): 3333 doi: 10.3969/j.issn.1672-4992.2018.20.040

      李聰聰, 朱莉. 宮頸癌的病因及宮頸癌疫苗現狀. 現代腫瘤醫學, 2018, 26(20):3333 doi: 10.3969/j.issn.1672-4992.2018.20.040
      [3] Wu S C. Significance of gynecological census in prevention of cervical cancer. Guide China Med, 2011, 9(27): 91 doi: 10.3969/j.issn.1671-8194.2011.27.065

      吳三春. 婦科普查對預防宮頸癌的意義. 中國醫藥指南, 2011, 9(27):91 doi: 10.3969/j.issn.1671-8194.2011.27.065
      [4] Zhang W H, Li N, Wu L Y. Attention should be paid on the trend of carcinoma of the cervix in young women. Zhejiang Cancer J, 2000, 6(2): 112

      章文華, 李楠, 吳令英. 重視宮頸癌患者年輕化的趨勢. 浙江腫瘤, 2000, 6(2):112
      [5] Lin Y X. Clinical Pathological Features and Prognosis Analysis of Cervical Cancer [Dissertation]. Nanning: Guangxi Medical University, 2013

      林泳秀. 宮頸癌的臨床病理特點與預后分析[學位論文]. 南寧: 廣西醫科大學, 2013
      [6] Wang L, Zhao W X, Zhao X L, et al. A comparative study of two methods of smear-making: Membrane-based and sedimentation in liquid-based cervical cytology. Med Pharm J Chin Peoples Liberation Army, 2011, 23(4): 6 doi: 10.3969/j.issn.2095-140X.2011.04.003

      王力, 趙穩興, 趙璽龍, 等. 膜式和沉降式宮頸液基細胞學制片方法的比較研究. 解放軍醫藥雜志, 2011, 23(4):6 doi: 10.3969/j.issn.2095-140X.2011.04.003
      [7] Zhao C Q, Zhou X R, Sui L, et al. Cervical Cancer Screening and Clinical Management (Cytology, Histology, Colposcopy). Beijing: Beijing Science and Technology Press, 2017

      趙澄泉, 周先榮, 隋龍, 等. 宮頸癌篩查及臨床處理(細胞學、組織學和陰道鏡學). 北京: 北京科學技術出版社, 2017
      [8] Wei L H. Standardized Training Materials for Colposcopy and Cervical Cytopathology. Beijing: People’s Medical Publishing House, 2020

      魏麗惠. 陰道鏡及宮頸細胞病理學規范化培訓教材. 北京: 人民衛生出版社, 2020
      [9] Wang Y Y, Wang Y, Qiao Y L, et al. The future of cervical cancer screening in China?Abandonment or conservation of cytological primary screening. Chin J Pract Gynecol Obstet, 2017, 33(3): 324

      王軼英, 王悅, 喬友林, 等. 中國宮頸癌篩查未來之路——細胞學初篩的棄或守. 中國實用婦科與產科雜志, 2017, 33(3):324
      [10] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
      [11] Szeliski R. Computer Vision. London: Springer London Press, 2011
      [12] Zhang Y Z. Image Engineering. 4th Ed. Beijing: Tsinghua University Press, 2018

      章毓晉. 圖像工程. 4版. 北京: 清華大學出版社, 2018
      [13] Shi Y H. Study of Machine Learning Techniques and Applications in Med-Ical Image Analysis [Dissertation]. Nanjing: Nanjing University, 2013

      史穎歡. 醫學圖像處理中的機器學習方法及其應用研究[學位論文]. 南京: 南京大學, 2013
      [14] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533 doi: 10.1038/323533a0
      [15] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
      [16] Cai W B. Study on Detection Techniques of Pathological Images of Cancer Cells [Dissertation]. Taiyuan: North University of China, 2018

      蔡武斌. 癌細胞病理圖像的檢測技術研究[學位論文]. 太原: 中北大學, 2018
      [17] Kermany D S, Goldbaum M, Cai W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018, 172(5): 1122 doi: 10.1016/j.cell.2018.02.010
      [18] Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362

      叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
      [19] Zhang L, Le L, Nogues I, et al. DeepPap: deep convolutional networks for cervical cell classification. IEEE J Biomed Heal Inform, 2017, 21(6): 1633 doi: 10.1109/JBHI.2017.2705583
      [20] Wu M, Yan C B, Liu H Q, et al. Automatic classification of cervical cancer from cytological images by using convolutional neural network. Biosci Rep, 2018, 38(6): BSR20181769 doi: 10.1042/BSR20181769
      [21] Jia D Y, Li Z Y, Zhang C W. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing, 2020, 411: 112 doi: 10.1016/j.neucom.2020.06.006
      [22] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
      [23] Chen X H. The Bethesda System for Reporting Cervical Cytology (Definitions, Criteria, and Explanatory Notes). 3rd Ed. Beijing: Science press, 2019

      陳小槐. 子宮頸細胞學Bethesda報告系統(中文翻譯版, 原書第3版). 北京: 科學出版社, 2019
      [24] He Y E, Wang Y F, Lang J H, et al. The evaluation of computer cytological test with colposcopy for the diagnosis of cervical lesions. Chin J Obstet Gynecol, 1998, 33(5): 265 doi: 10.3760/j.issn:0529-567X.1998.05.002

      賀又娥, 王友芳, 郎景和, 等. 計算機輔助細胞檢測系統配合陰道鏡檢查對子宮頸病變的診斷價值. 中華婦產科雜志, 1998, 33(5):265 doi: 10.3760/j.issn:0529-567X.1998.05.002
      [25] Stoler M H. Advances in cervical screening technology. Mod Pathol, 2000, 13(3): 275 doi: 10.1038/modpathol.3880048
      [26] Zhou L P. Cervical Smears Automatic Auxiliary System Related to Image Interpretation Techniques [Dissertation]. Qingdao: Ocean University of China, 2009

      周立平. 宮頸涂片自動輔助判讀系統中相關圖像技術的研究[學位論文]. 青島: 中國海洋大學, 2009
      [27] Zheng K, Zhang S, Tang J Q. Application of Thinprep computer-assisted imaging system in cervical cytology. Chin J Diagn Pathol, 2015, 22(6): 364 doi: 10.3969/j.issn.1007-8096.2015.06.013

      鄭珂, 張聲, 唐堅清. 計算機輔助閱片系統在宮頸細胞學篩查中的應用. 診斷病理學雜志, 2015, 22(6):364 doi: 10.3969/j.issn.1007-8096.2015.06.013
      [28] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context // Computer Vision – ECCV 2014. Zurich, 2014: 740
      [29] Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[J/OL]. arXiv preprint (2019-12-3) [2021-6-24]. https://arxiv.org/abs/1912.01703
      [30] Mao X Y, Leng X F. Introduction to Opencv3 programming. Beijing: Electronics industry publishing house, 2015

      毛星云, 冷雪飛. Opencv3編程入門. 北京: 電子工業出版社, 2015
      [31] Huang G, Liu Z, Pleiss G, et al. Convolutional networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell, 2019, doi: 10.1109/TPAMI.2019.2918284
      [32] Hu J, Shen L, Sun G. Squeeze-and-excitation networks // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
      [33] Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks // International Conference on Machine Learning. Long Beach, 2019: 6105
      [34] Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 5987
      [35] Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8697
      [36] Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design // Computer Vision – ECCV 2018. Munich, 2018: 122
      [37] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning // Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, 2017(31): 1
      [38] Chollet F. Xception: deep learning with depthwise separable convolutions // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1800
      [39] Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6154
      [40] Pang J M, Chen K, Shi J P, et al. Libra R-CNN: Towards balanced learning for object detection // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 821
      [41] Li Y H, Chen Y T, Wang N Y, et al. Scale-aware trident networks for object detection // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 6053
      [42] Kong T, Sun F C, Liu H P, et al. FoveaBox: beyound anchor-based object detection. IEEE Trans Image Process, 2020, 29: 7389 doi: 10.1109/TIP.2020.3002345
      [43] Zhang S F, Chi C, Yao Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 9756
      [44] Ultralytics. YoloV5[EB/OL]. Github(2020-10-12)[2021-06-24]. https://github.com/ultralytics/YoloV5
    • 加載中
    圖(4) / 表(4)
    計量
    • 文章訪問數:  1823
    • HTML全文瀏覽量:  615
    • PDF下載量:  229
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-01-12
    • 網絡出版日期:  2021-06-18
    • 刊出日期:  2021-09-18

    目錄

      /

      返回文章
      返回