• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    深錐固體通量與絮凝劑單耗和料漿濃度的數學關系

    王勇 曹晨 吳愛祥

    王勇, 曹晨, 吳愛祥. 深錐固體通量與絮凝劑單耗和料漿濃度的數學關系[J]. 工程科學學報, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002
    引用本文: 王勇, 曹晨, 吳愛祥. 深錐固體通量與絮凝劑單耗和料漿濃度的數學關系[J]. 工程科學學報, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002
    WANG Yong, CAO Chen, WU Ai-xiang. Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration[J]. Chinese Journal of Engineering, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002
    Citation: WANG Yong, CAO Chen, WU Ai-xiang. Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration[J]. Chinese Journal of Engineering, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002

    深錐固體通量與絮凝劑單耗和料漿濃度的數學關系

    doi: 10.13374/j.issn2095-9389.2021.01.25.002
    基金項目: 國家自然科學基金資助項目(52042402, 51834001);中央高校基本科研業務費青年教師國際交流成長計劃項目(QNXM20210002);中央高校基本科研業務費資助項目(FRF-IDRY-20-031,FRF-TP-19-002C2Z)
    詳細信息
      作者簡介:

      吳愛祥,等.超細全尾砂靜態絮凝沉降規律及其在立式砂倉設計中的應用.化工礦物與加工,2019,48(3):35)

      通訊作者:

      E-mail: wuaixiang@126.com

    • 中圖分類號: TD85

    Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration

    More Information
    • 摘要: 深錐濃密機的面積或占地大小主要由其固體通量決定。通過量筒靜態沉降實驗,計算得到深錐濃密機固體通量,分析了絮凝劑單耗、料漿濃度對深錐濃密機固體通量的影響,得到了兩種因素對深錐濃密機固體通量的影響規律。結果表明,尾礦在5~30 g·t?1的絮凝劑單耗下,基本呈現二次函數關系;料漿的固相質量分數為6%~26%時,固體通量呈現先增大后減小的趨勢,與實驗所得的規律相契合。通過對絮凝劑單耗和料漿濃度耦合效應下的固體通量方程回歸分析,得到三者之間的數學關系,進而確定二者對固體通量的貢獻為:料漿濃度>絮凝劑單耗。結合絮凝劑及料漿濃度對固體通量的影響分析,總結了絮凝劑單耗和料漿濃度貢獻值不同的原因。最后,結合單因素和耦合條件下的數學方程,對深錐濃密機的設計和運行提出工程建議。在深錐濃密機運行過程中,需要優先保證料漿濃度,其次是絮凝劑單耗。

       

    • 圖  1  全尾砂粒級組成曲線

      Figure  1.  Particle size distribution curve of full tailings

      圖  2  自制砂漿攪拌裝置混合、沉降過程

      Figure  2.  Mixing and settling processes by homemade mortar mixing unit

      圖  3  不同絮凝劑單耗與固體通量關系

      Figure  3.  Relationship between solid fluxes per unit consumption of different flocculants

      圖  4  不同料漿濃度與固體通量關系

      Figure  4.  Relationships between different slurry concentrations and solid fluxes

      圖  5  高分子絮凝作用

      Figure  5.  Polymer flocculation

      表  1  全尾砂基本物理性質

      Table  1.   Basic physical properties of full tailings

      True density/
      (t·m?3)
      Unit weight/
      (t·m?3)
      Porosity/
      %
      Theoretical
      saturation/%
      2.751.6440.3680.25
      下載: 導出CSV

      表  2  不同絮凝劑單耗實驗配料表

      Table  2.   Experimental ingredient list for different flocculant unit consumptions

      Order numberQuality of tailings/gQuality of water/gFlocculant unit consumptions/(g·t?1)Flocculant addition/g
      111089050.183
      2110890100.367
      3110890150.550
      4110890200.733
      5110890250.917
      6110890301.100
      下載: 導出CSV

      表  3  配料表

      Table  3.   Ingredient list

      Order numberMass fraction
      of solid
      phase/%
      Quality
      of tailings/
      g
      Quality of
      water/g
      Flocculant unit
      consumptions/
      (g·t?1)
      Flocculant
      addition/g
      1660940150.3
      211110890150.55
      316160840150.8
      421210790151.05
      526260740151.3
      6660940200.4
      711110890200.73
      816160840201.07
      921210790201.4
      1026260740201.73
      下載: 導出CSV

      表  4  不同絮凝劑單耗絮凝沉降實驗結果及固體通量計算結果

      Table  4.   Results of flocculation and sedimentation experiments with different flocculants and solid flux calculations

      Order numberFlocculant unit consumptions/
      (g·t?1)
      Initial height/
      mm
      Time of settlement/sHeight of settlement/
      mm
      Solid flux/
      (t·d?1·m?2)
      15268523561.753
      2102685205117.89
      3152685180164.67
      4202685160202.1
      5252685155211.46
      6302685150220.81
      下載: 導出CSV

      表  5  不同料漿濃度絮凝沉降實驗結果及固體通量計算結果

      Table  5.   Results of flocculation and sedimentation experiments with different slurry concentrations and calculation of solid fluxes

      Order numberMass
      fraction
      of solid
      phase/%
      Flocculant unit
      consumptions/
      (g·t?1)
      Initial height/
      mm
      Time of
      settlement/s
      Height of
      settlement/mm
      Solid
      flux/
      (t·d?1·
      m?2)
      1615276519084.877
      211152685180164.67
      316152605203160.64
      421152495209153.4
      526152435213147.87
      66202765155119.42
      711202685150220.81
      816202605190197.28
      921202495199191.75
      1026202435206182.37
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51

      吳愛祥, 李紅, 楊柳華, 等. 深地開采, 膏體先行. 黃金, 2020, 41(9):51
      [2] Yuan Z L, Hu J L, Wu D, et al. A dual-attention recurrent neural network method for deep cone thickener underflow concentration prediction. Sensors, 2020, 20(5): 1260 doi: 10.3390/s20051260
      [3] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

      吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
      [4] Wu H P, Cao W B, Zhang C P. Test study on the law of dense settlement of full tailings. Modern Mining, 2020, 36(04): 143 doi: 10.3969/j.issn.1674-6082.2020.04.041

      吳和平, 曹萬寶, 張春鵬. 全尾砂濃密沉降規律試驗研究. 現代礦業, 2020, 36(04):143 doi: 10.3969/j.issn.1674-6082.2020.04.041
      [5] Wu W X, Miao Z X, Long J, et al. Research progress on dynamic characteristics of particle sedimentation. Met Mine, 2019(6): 27

      吳維新, 苗子旭, 龍佳, 等. 顆粒沉降動力學特性研究進展. 金屬礦山, 2019(6):27
      [6] Wang X T, Cui B Y, Wei D Z, et al. Numerical simulation on characteristics of internal flow field in flocculation agitator. J Northeast Univ Nat Sci, 2018, 39(10): 1442 doi: 10.12068/j.issn.1005-3026.2018.10.015

      王學濤, 崔寶玉, 魏德洲, 等. 絮凝攪拌器內部流場特性數值模擬. 東北大學學報(自然科學版), 2018, 39(10):1442 doi: 10.12068/j.issn.1005-3026.2018.10.015
      [7] Chen D, Song W D, Wu S. Experiment on the flocculation settlement properties of total tailings slurry. Nonferrous Met (Min Sect), 2016, 68(4): 41

      陳達, 宋衛東, 吳姍. 全尾砂料漿絮凝沉降特性試驗研究. 有色金屬(礦山部分), 2016, 68(4):41
      [8] Bian J W, Wang H, Xiao C C, et al. An experimental study on the flocculating settling of unclassified tailings. PLoS One, 2018, 13(9): e0204230 doi: 10.1371/journal.pone.0204230
      [9] Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
      [10] Quezada G R, Jeldres M, Toro N, et al. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surf A:Physicochem Eng Aspects, 2021, 608: 125576 doi: 10.1016/j.colsurfa.2020.125576
      [11] Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419

      王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419
      [12] Zhang M D, Rao Y Z, Xu W F, et al. Experimental study on static flocculation and settlement of full tailing mortar in a mine. Met Mine, 2020(12): 50

      張美道, 饒運章, 徐文峰, 等. 某礦全尾砂漿靜態絮凝沉降試驗研究. 金屬礦山, 2020(12):50
      [13] Wang Y, Wu A X, Wang H J, et al. Effect of flocculation and dilution on the tailings setting performance and project proposal. J Wuhan Univ Technol, 2014, 36(9): 114

      王勇, 吳愛祥, 王洪江, 等. 絮凝和稀釋對尾礦沉降性能的影響及工程建議. 武漢理工大學學報, 2014, 36(9):114
      [14] Hou H Z, Li C P, Wang S Y, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings. J Central South Univ Sci Technol, 2019, 50(6): 1428 doi: 10.11817/j.issn.1672-7207.2019.06.022

      侯賀子, 李翠平, 王少勇, 等. 尾礦濃密中泥層沉降速度變化及顆粒沉降特性. 中南大學學報(自然科學版), 2019, 50(6):1428 doi: 10.11817/j.issn.1672-7207.2019.06.022
      [15] Wang J, Qiao D P, Han R S, et al. Consecutive discharge tailings model of vertical sand silo and its application. Chin J Nonferrous Met, 2020, 30(1): 235 doi: 10.11817/j.ysxb.1004.0609.2020-35704

      王俊, 喬登攀, 韓潤生, 等. 立式砂倉連續放砂模型及應用. 中國有色金屬學報, 2020, 30(1):235 doi: 10.11817/j.ysxb.1004.0609.2020-35704
      [16] Li G C, Wang H J, Wu A X, et al. Analysis of thickening performance of unclassified tailings in rakeless deep cone thickener. Chin J Eng, 2019, 41(1): 60

      李公成, 王洪江, 吳愛祥, 等. 全尾砂無耙深錐穩態濃密性能分析. 工程科學學報, 2019, 41(1):60
      [17] Chen X Z, Guo L J, Xu W Y, et al. Method for determining deep cone thickener size based on batch settling test. Nonferrous Met Min Sect, 2020, 72(6): 107

      陳鑫政, 郭利杰, 許文遠, 等. 基于尾礦沉降試驗的深錐濃密機尺寸確定方法. 有色金屬(礦山部分), 2020, 72(6):107
      [18] Shi C X, Guo L J, Chen X. Static and dynamic flocculation sedimentation characteristics of unclassified tailings. Chin J Nonferrous Met, 2021, 31(1): 194 doi: 10.11817/j.ysxb.1004.0609.2021-37715

      史采星, 郭利杰, 陳新. 全尾砂靜動態絮凝沉降特性. 中國有色金屬學報, 2021, 31(1):194 doi: 10.11817/j.ysxb.1004.0609.2021-37715
      [19] Zhao X, Guo Y B. Theoretical analysis and application of thickener design. J Taiyuan Univ Sci Technol, 2013, 34(1): 37 doi: 10.3969/j.issn.1673-2057.2013.01.008

      趙鑫, 郭亞兵. 濃縮機設計理論分析及應用. 太原科技大學學報, 2013, 34(1):37 doi: 10.3969/j.issn.1673-2057.2013.01.008
      [20] Stokes G G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans Cambridge Philos Soc, 1850, 9: 8
      [21] Peng N B, Wu A X, Wang H J, et al. Research on flocculation sedimentation technology of unclassified-tailings. Min Res Dev, 2015, 35(7): 35

      彭乃兵, 吳愛祥, 王洪江, 等. 全尾砂絮凝沉降工藝研究. 礦業研究與開發, 2015, 35(7):35
      [22] Yang Z, Shang Y B, Lu Y B, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem Eng J, 2011, 172(1): 287 doi: 10.1016/j.cej.2011.05.106
      [23] M Dash, R K Dwari, S K Biswal, et al. Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings. Chem Eng J, 2011, 173(2): 318 doi: 10.1016/j.cej.2011.07.034
      [24] Yao G X. Coarse Particle Settling Properties Study Based on Particle Analysis [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2014

      姚國新. 基于顆粒受力的粗顆粒沉降性質研究[學位論文]. 贛州: 江西理工大學, 2014
      [25] Crowe C T, Schwarzkopf J D, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles. Boca Raton: CRC Press, 2011
      [26] Sun H, Li M L, Cui R, et al. Influence of different flocculants on settling effect of lead-zinc tailings. Conserv Util Miner Resour, 2021, 41(1): 66

      孫浩, 李茂林, 崔瑞, 等. 不同絮凝劑對鉛鋅尾礦沉降效果的影響. 礦產保護與利用, 2021, 41(1):66
      [27] Niu P, Wang H J, Wu A X, et al. Static flocculation and sedimentation rule of ultrafine whole tailings and its application in design of vertical sand Bin. Ind Miner Process, 2019, 48(3): 35

      牛鵬, 王洪江, 吳愛祥, 等. 超細全尾砂靜態絮凝沉降規律及其在立式砂倉設計中的應用. 化工礦物與加工, 2019, 48(3):35
    • 加載中
    圖(5) / 表(5)
    計量
    • 文章訪問數:  653
    • HTML全文瀏覽量:  287
    • PDF下載量:  104
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-01-25
    • 網絡出版日期:  2021-04-20
    • 刊出日期:  2021-10-12

    目錄

      /

      返回文章
      返回