• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    仿生撲翼飛行器風洞實驗研究進展

    付強 張祥 趙民 張春華 賀威

    付強, 張祥, 趙民, 張春華, 賀威. 仿生撲翼飛行器風洞實驗研究進展[J]. 工程科學學報, 2022, 44(4): 767-779. doi: 10.13374/j.issn2095-9389.2021.04.30.004
    引用本文: 付強, 張祥, 趙民, 張春華, 賀威. 仿生撲翼飛行器風洞實驗研究進展[J]. 工程科學學報, 2022, 44(4): 767-779. doi: 10.13374/j.issn2095-9389.2021.04.30.004
    FU Qiang, ZHANG Xiang, ZHAO Min, ZHANG Chun-hua, HE Wei. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle[J]. Chinese Journal of Engineering, 2022, 44(4): 767-779. doi: 10.13374/j.issn2095-9389.2021.04.30.004
    Citation: FU Qiang, ZHANG Xiang, ZHAO Min, ZHANG Chun-hua, HE Wei. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle[J]. Chinese Journal of Engineering, 2022, 44(4): 767-779. doi: 10.13374/j.issn2095-9389.2021.04.30.004

    仿生撲翼飛行器風洞實驗研究進展

    doi: 10.13374/j.issn2095-9389.2021.04.30.004
    基金項目: 裝備預研教育部聯合基金資助項目(6141A02033339);北京科技大學青年教師學科交叉研究資助項目(FRF-IDRY-19-010);國家自然科學基金資助項目(61803025,62073031)
    詳細信息
      通訊作者:

      E-mail: weihe@ieee.org

    • 中圖分類號: TP242.6

    Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle

    More Information
    • 摘要: 仿生撲翼飛行器的設計靈感來源于自然界中的鳥類、昆蟲和蝙蝠的飛行模式,通過機翼的主動運動來產生飛行所需要的升力和推力。仿生撲翼飛行器具有隱蔽性好、機動性強等優點,成為近年來國內外飛行器研究的重點。但是仿生撲翼飛行器研究涉及到低雷諾數、非定常空氣動力學等問題,與常規固定翼飛行器有很大的不同。仿生撲翼飛行器的研究方法一般分三種:氣動計算、風洞實驗和外場試飛。氣動計算方面,非定常氣動設計優化理論與方法目前仍存在不足;外場試飛的方法無法精確測量出飛行器復雜的氣動力,難以對飛行器進行定量分析研究;風洞實驗由于可以模擬飛行時的真實情況,獲得的數據較為真實可靠,且可以定量分析研究,成為目前研究仿生撲翼飛行器非常有效的方法。國內外研究人員利用風洞進行了大量針對仿生撲翼飛行器的實驗研究。在介紹了風洞組成和分類的基礎上,詳細闡述了仿鳥和仿昆蟲撲翼飛行器風洞實驗的研究現狀,最后對仿生撲翼飛行器風洞實驗未來可能的研究方向給出了建議。

       

    • 圖  1  開口回流式低速風洞結構示意圖

      Figure  1.  Wind tunnel structure of a flapping-wing aerial vehicle

      圖  2  北京科技大學微型飛行器專用風洞

      Figure  2.  Special wind tunnel for a microair vehicle of University of Science and Technology Beijing

      圖  3  歐姆龍VTE?18?4N4212 漫反射光電開關

      Figure  3.  OMRON VTE?18?4N4212 diffuse reflection photoelectric switch

      圖  4  數字式粒子圖像測速系統

      Figure  4.  Digital particle image velocimetry system

      圖  5  DIC系統[6]

      Figure  5.  Digital image correlation[6]

      圖  6  ATI nano17

      Figure  6.  ATI nano17

      圖  7  煙流法下顯示的流場

      Figure  7.  Flow field under the smoke flow method

      圖  8  鳥類翅膀結構

      Figure  8.  Structure of a bird wing

      圖  9  熊超和宋筆鋒所用仿生撲翼飛行器和實驗機翼。(a)實驗用仿生撲翼飛行器;(b)實驗機翼[3]

      Figure  9.  Flapping-wing aerial vehicle and the experimental wing used by Xiong C and Song B F: (a) experimental flapping-wing aerial vehicle;(b) experimental wing[3]

      圖  10  昂海松等實驗所用撲翼飛行器[19]

      Figure  10.  Flapping-wing aerial vehicle used by Ang H S’s team[19]

      圖  11  仿生撲翼飛行器翼肋及機翼形狀平面圖。(a) 翼肋結構;(b)機翼形狀平面圖

      Figure  11.  Plan view of wing rib and wing shape of bionic flapping-wing aerial vehicle: (a) structure of the wing rib; (b) schematic of the planform view of the wing shape

      圖  12  仿生撲翼飛行器整機及撲翼系統示意圖。(a)仿生撲翼飛行器整機;(b)開放試驗段風洞中的撲翼系統[20]

      Figure  12.  Schematic of the whole bionic flapping-wing aerial vehicle: (a) the whole bionic flapping-wing aerial vehicle; (b) flapping wing system in the open test section of a wind tunnel[20]

      圖  13  橢圓形和燕尾形尾翼。(a)橢圓形;(b)燕尾形[25]

      Figure  13.  The oval and dovetail tails: (a) oval tail; (b) dovetail[25]

      圖  14  試驗用仿生撲翼飛行器整機圖[26]

      Figure  14.  The whole bionic flapping-wing aerial vehicle for testing[26]

      圖  15  翼展處的翼型截面圖。(a)10%翼長;(b)20%翼長;(c)30%翼長;(d)40%翼長;(e)50%翼長;(f)60%翼長;(g)70%翼長;(h)80%翼長;(i)90%翼長[32]

      Figure  15.  Airfoil section at wingspan: (a) 10% chord; (b) 20% chord; (c) 30% chord; (d) 40% chord; (e) 50% chord; (f) 60% chord; (g) 70% chord; (h) 80% chord; (i) 90% chord[32]

      圖  16  具有上彎和前凸特征的海鷗翅膀

      Figure  16.  Wings of a seagull characterized by upper bending and anterior protrusion

      圖  17  昆翅的結構

      Figure  17.  Structure of an insect wing

      圖  18  實驗所用4種翼面形狀

      Figure  18.  Four wing shapes used in the experiment

      圖  19  RoboBee X-Wing

      Figure  19.  RoboBee X-Wing

      圖  20  千葉大學四翼撲翼飛行器[47]

      Figure  20.  Chiba University’s four-wing flapping-wing aerial vehicle[47]

      圖  21  翅膀設計輪廓[48]

      Figure  21.  Contour of a wing design[48]

      圖  22  變剛度翅膀[39]

      Figure  22.  Variable stiffness wing[39]

      表  1  熊超團隊和昂海松團隊實驗結果展示

      Table  1.   Experimental results of Xiong C’s team and Ang H S’s team

      TeamVariableChange of the angle of attackChange of flapping frequencyChange of wind speed
      Xiong CLiftIncreaseBasically constantIncrease
      ThrustDecreaseIncreaseDecrease
      Ang H SLiftIncreaseIncreaseIncrease
      ThrustBasically constantIncreaseDecrease
      下載: 導出CSV
      中文字幕在线观看
    • [1] Yin Z, He W, Zou Y, et al. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Autom Sin, 2021, 47(6): 1355

      尹曌, 賀威, 鄒堯, 等. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動化學報, 2021, 47(6):1355
      [2] Xie Y J, Ye Z Y, Bai J, et al. Design of strain-gage balances for micro air vehicles and their experiments in wind tunnel. J Exp Fluid Mech, 2006, 20(1): 23 doi: 10.3969/j.issn.1672-9897.2006.01.006

      解亞軍, 葉正寅, 白靜, 等. 微型飛行器測量天平設計與風洞試驗. 實驗流體力學, 2006, 20(1):23 doi: 10.3969/j.issn.1672-9897.2006.01.006
      [3] Xiong C, Song B F. Experimental investigation of aerodynamic characteristics of flapping-wing MAV in wind tunnel. Sci Technol Eng, 2007, 7(11): 2576 doi: 10.3969/j.issn.1671-1815.2007.11.027

      熊超, 宋筆鋒. 微型撲翼飛行器氣動機理風洞試驗研究. 科學技術與工程, 2007, 7(11):2576 doi: 10.3969/j.issn.1671-1815.2007.11.027
      [4] Katzmayr R. Effect of periodic changes of angle of attack on behavior of airfoils. NACA, 1922: 147
      [5] Pennycuick C J. A wind-tunnel study of gliding flight in the pigeon Columba livia. J Exp Biol, 1968, 49(3): 509 doi: 10.1242/jeb.49.3.509
      [6] Fu P. Research on Wind Tunnel Experimental Method and Application of Flapping-Wing Micro Air Vehicle [Dissertation]. Xi’an: Northwestern Polytechnical University, 2017

      付鵬. 微型撲翼飛行器風洞實驗方法與應用研究[學位論文]. 西安: 西北工業大學, 2017
      [7] Rojratsirikul P, Wang Z, Gursul I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils. J Fluids Struct, 2010, 26(3): 359 doi: 10.1016/j.jfluidstructs.2010.01.005
      [8] He D X. Wind Tunnel Balance. Beijing: National Defense Industry Press, 2003

      賀德馨. 風洞天平. 北京: 國防工業出版社, 2003
      [9] Qian A W, Zhao N. Research status of lift test device for flapping wing aerial vehicle. Sci Technol Innov, 2019(18): 53 doi: 10.3969/j.issn.1673-1328.2019.18.030

      錢愛文, 趙妞. 撲翼飛行器升力測試裝置研究現狀. 科學技術創新, 2019(18):53 doi: 10.3969/j.issn.1673-1328.2019.18.030
      [10] Fu Q, Zhang S Y, Wang J B, et al. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on offboard monocular vision. Chin J Eng, 2020, 42(2): 249

      付強, 張樹禹, 王久斌, 等. 基于外部單目視覺的仿生撲翼飛行器室內定高控制. 工程科學學報, 2020, 42(2):249
      [11] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685

      賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685
      [12] Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512

      付強, 陳向陽, 鄭子亮, 等. 仿生撲翼飛行器的視覺感知系統研究進展. 工程科學學報, 2019, 41(12):1512
      [13] Chen Y F, Zhao H C, Mao J, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575(7782): 324 doi: 10.1038/s41586-019-1737-7
      [14] Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
      [15] He W, Mu X X, Zhang L, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Autom Sin, 2021, 8(1): 148 doi: 10.1109/JAS.2020.1003417
      [16] Pan E Z, Liang X, Xu W F. Development of vision stabilizing system for a large-scale flapping-wing robotic bird. IEEE Sens J, 2020, 20(14): 8017 doi: 10.1109/JSEN.2020.2981173
      [17] Zhang Y L, Sun M. Erratum to: Dynamic flight stability of hovering model insects: Theory versus simulation using equations of motion coupled with Navier-Stokes equations. Acta Mech Sin, 2011, 27(2): 308 doi: 10.1007/s10409-011-0454-8
      [18] Tubaro P L. A comparative study of aerodynamic function and flexural stiffness of outer tail feathers in birds. J Avian Biol, 2003, 34(3): 243 doi: 10.1034/j.1600-048X.2003.03084.x
      [19] Ang H S, Zeng R, Duan W B, et al. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV. J Aerosp Power, 2007, 22(11): 1838 doi: 10.3969/j.issn.1000-8055.2007.11.010

      昂海松, 曾銳, 段文博, 等. 柔性撲翼微型飛行器升力和推力機理的風洞試驗和飛行試驗. 航空動力學報, 2007, 22(11):1838 doi: 10.3969/j.issn.1000-8055.2007.11.010
      [20] Mazaheri K, Ebrahimi A. Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight. J Fluids Struct, 2011, 27(4): 586 doi: 10.1016/j.jfluidstructs.2011.04.001
      [21] Tobalske B, Dial K. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J Exp Biol, 1996, 199: 263 doi: 10.1242/jeb.199.2.263
      [22] Park K J, Rosén M, Hedenström A. Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel. J Exp Biol, 2001, 204(Pt 15): 2741
      [23] Xiong C. Analysis and Design Method Research of Tail Fin of Miniature Flapping Wing Aerial Vehicle [Dissertation]. Xi’an: Northwestern Polytechnical University, 2007

      熊超. 微型撲翼飛行器尾翼的分析與設計方法研究[學位論文]. 西安: 西北工業大學, 2007
      [24] Li X Z. Aerodynamic Analysis of Flexible Wing and Tail with Multi-Segment Flapping Vehicle [Dissertation]. Tianjin: Civil Aviation University of China, 2018

      李喜喆. 多段仿生撲翼機柔性翅翼及尾翼氣動分析[學位論文]. 天津: 中國民航大學, 2018
      [25] Huang C, Li W B, Zhao W K, et al. Establishment and research of flexible tail dynamics model of flapping-wing aircraft. J Ordnance Equip Eng, 2020, 41(5): 9 doi: 10.11809/bqzbgcxb2020.05.003

      黃燦, 李文彬, 趙衛凱, 等. 撲翼飛行器柔性尾翼動力學模型的建立與研究. 兵器裝備工程學報, 2020, 41(5):9 doi: 10.11809/bqzbgcxb2020.05.003
      [26] Lee J S, Kim J K, Han J H, et al. Periodic tail motion linked to wing motion affects the longitudinal stability of ornithopter flight. J Bionic Eng, 2012, 9(1): 18 doi: 10.1016/S1672-6529(11)60093-0
      [27] Tsai B J, Fu Y C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle. Aerosp Sci Technol, 2009, 13(7): 383 doi: 10.1016/j.ast.2009.07.007
      [28] Su J Y, Yang J T. Analysis of the aerodynamic force in an eye-stabilized flapping flyer. Bioinspir Biomim, 2013, 8(4): 046010 doi: 10.1088/1748-3182/8/4/046010
      [29] Zhang J M. “Father of Aviation” Zhukovsky’s growth road. Technol Wind, 2015(8): 2 doi: 10.3969/j.issn.1671-7341.2015.08.002

      張家銘. “航空之父”茹科夫斯基的成長之路. 科技風, 2015(8):2 doi: 10.3969/j.issn.1671-7341.2015.08.002
      [30] Ashraf M A, Young J, Lai J C S. Reynolds number, thickness and camber effects on flapping airfoil propulsion. J Fluids Struct, 2011, 27(2): 145 doi: 10.1016/j.jfluidstructs.2010.11.010
      [31] Unger R, Haupt M C, Horst P, et al. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow. J Fluids Struct, 2012, 28: 72 doi: 10.1016/j.jfluidstructs.2011.08.009
      [32] Cai C R. Aerodynamic Performance Research of Bionic Wing Based on Pigeon Wings [Dissertation]. Changchun: Jilin University, 2018

      蔡常睿. 基于信鴿翅膀的仿生機翼氣動性能研究[學位論文]. 長春: 吉林大學, 2018
      [33] Shi J T, Hua X, Wang H W, et al. Based on imitation of seagulls wings configuration wing aerodynamic performance analysis. Mech Sci Technol Aerosp Eng, 2017, 36(Suppl 1): 13

      史繼拓, 華欣, 王宏偉, 等. 基于仿海鷗翅翼構型的機翼氣動性能分析. 機械科學與技術, 2017, 36(增刊1): 13
      [34] Shao L M, Song B F, Xiong C, et al. Experimental investigation of flapping-wing MAV in wind tunnel. Acta Aeronaut et Astronaut Sin, 2007, 28(2): 275 doi: 10.3321/j.issn:1000-6893.2007.02.004

      邵立民, 宋筆鋒, 熊超, 等. 微型撲翼飛行器風洞試驗初步研究. 航空學報, 2007, 28(2):275 doi: 10.3321/j.issn:1000-6893.2007.02.004
      [35] Zhang Y F, Li Y, Tian W J. Effects of flapping amplitude angle on aerodynamic force of flapping wing micro air vehicle. Mech Eng Autom, 2019(1): 18 doi: 10.3969/j.issn.1672-6413.2019.01.007

      張亞鋒, 李郁, 田衛軍. 撲動幅值角對仿生撲翼氣動力特性的影響. 機械工程與自動化, 2019(1):18 doi: 10.3969/j.issn.1672-6413.2019.01.007
      [36] Li K K, Chen W W. Variable stiffness design of flapping wings and its effects on lift and thrust. Acta Aeronaut et Astronaut Sin, 2020, 41(11): 423785

      李康康, 陳巍巍. 撲翼的變剛度設計及其對升力和推力的影響. 航空學報, 2020, 41(11):423785
      [37] Shi C M, Nie X F, Zhou X M. Wind tunnel experimental study on the effect of tandem wings on the propulsion performance of flapping wing aerial vehicle // Celebration of the 60th Anniversary of the Chinese Society of Mechanics. Beijing: 2017: 972

      石成明, 聶小芳, 周襲明. 串列翼對撲翼飛行器推進性能影響的風洞實驗研究//慶祝中國力學學會成立60周年大會論文集. 北京, 2017: 972
      [38] Warkentin J, DeLaurier J. Experimental aerodynamic study of tandem flapping membrane wings. J Aircr, 2007, 44(5): 1653 doi: 10.2514/1.28160
      [39] Fu P, Song B F, Liang S R, et al. An experimental research about the characteristics of thrust and power of FMAV. J Northwest Polytech Univ, 2016, 34(6): 976 doi: 10.3969/j.issn.1000-2758.2016.06.008

      付鵬, 宋筆鋒, 梁少然, 等. 撲翼的推力特性與功率特性的實驗研究. 西北工業大學學報, 2016, 34(6):976 doi: 10.3969/j.issn.1000-2758.2016.06.008
      [40] Dickinson M H. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422): 1954 doi: 10.1126/science.284.5422.1954
      [41] Jin X Y, Yan J P, Zhou J H. Experimental research on the flexible wing and its theoretical explanation for the bionics flapping aerocraft. China Mech Eng, 2007, 18(9): 1028 doi: 10.3321/j.issn:1004-132X.2007.09.006

      金曉怡, 顏景平, 周建華. 仿生撲翼飛行機器人柔性翅試驗研究及其理論解釋. 中國機械工程, 2007, 18(9):1028 doi: 10.3321/j.issn:1004-132X.2007.09.006
      [42] Wootton R J. The mechanical design of insect wings. Sci Am, 1990, 263(5): 114 doi: 10.1038/scientificamerican1190-114
      [43] Zeng L J, Song D Q, Hao Q. Mechanism on the wing kinematics of insects. Opt Technol, 1999, 25(6): 18 doi: 10.3321/j.issn:1002-1582.1999.06.004

      曾理江, 宋德強, 郝群. 昆蟲運動機理的研究. 光學技術, 1999, 25(6):18 doi: 10.3321/j.issn:1002-1582.1999.06.004
      [44] Shang J K, Combes S A, Finio B M, et al. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir Biomim, 2009, 4(3): 036002 doi: 10.1088/1748-3182/4/3/036002
      [45] Muniappan A, Baskar V, Duriyanandhan V. Lift and thrust characteristics of flapping wing micro air vehicle (MAV) // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2005: 1055
      [46] Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016: 5645
      [47] Lu G T. Aerodynamic Performance Analysis of Four-Wing Flapping Aircraft [Dissertation]. Tianjin: Civil Aviation University of China, 2019

      陸冠廷. 四翼撲翼機氣動性能分析[學位論文]. 天津: 中國民航大學, 2019
      [48] Nakata T, Liu H, Tanaka Y, et al. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir Biomim, 2011, 6(4): 045002 doi: 10.1088/1748-3182/6/4/045002
      [49] Yang L J, Kao A, Hsu C K. Wing stiffness on light flapping micro aerial vehicles. J Aircr, 2012, 49(2): 42
      [50] Okamoto M, Yasuda K, Azuma A. Aerodynamic characteristics of the wings and body of a dragonfly. J Exp Biol, 1996, 199(pt 2): 281
      [51] Vogel S. Flight in Drosophila: II. Aerodynamic characteristics of fly wing sand wing models. I. J Exp Biol, 1967, 46(3): 431
      [52] Zhang F L. Experimental Research on the Transmission System of Fly-Like Flapping Wing Micro Air Vehicle [Dissertation]. Dalian: Dalian University of Technology, 2016

      張福梁. 仿蠅類撲翼微飛行器傳動系統的實驗研究[學位論文]. 大連: 大連理工大學, 2016
      [53] Feng B B, Chen D R, Wang J D, et al. Bionic research on bird feather for drag reduction. Adv Mech Eng, 2015, 7(2): 849294 doi: 10.1155/2014/849294
      [54] Hord K, Liang Y S. Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil. J Aircr, 2012, 49(3): 749 doi: 10.2514/1.C031135
      [55] Kim W K, Ko J H, Park H C, et al. Effects of corrugation of the dragonfly wing on gliding performance. J Theor Biol, 2009, 260(4): 523 doi: 10.1016/j.jtbi.2009.07.015
      [56] Levy D E, Seifert A. Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000. Phys Fluids, 2009, 21(7): 071901 doi: 10.1063/1.3166867
    • 加載中
    圖(22) / 表(1)
    計量
    • 文章訪問數:  891
    • HTML全文瀏覽量:  590
    • PDF下載量:  101
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2021-04-30
    • 網絡出版日期:  2021-07-01
    • 刊出日期:  2022-04-02

    目錄

      /

      返回文章
      返回