• Volume 6 Issue 2
    Nov.  2021
    Turn off MathJax
    Article Contents
    Ye Xingpu, Liu Xilin, Zhu Yuankai. The Direct Measurement Method of Conductivity Different Depth Method[J]. Chinese Journal of Engineering, 1984, 6(2): 105-111. doi: 10.13374/j.issn1001-053x.1984.02.009
    Citation: Ye Xingpu, Liu Xilin, Zhu Yuankai. The Direct Measurement Method of Conductivity Different Depth Method[J]. Chinese Journal of Engineering, 1984, 6(2): 105-111. doi: 10.13374/j.issn1001-053x.1984.02.009

    The Direct Measurement Method of Conductivity Different Depth Method

    doi: 10.13374/j.issn1001-053x.1984.02.009
    • Available Online: 2021-11-08
    • By taking the exact size of the conductivity cell as well as the resistance values at diffevent depth, the conductivity was calculated using the following equation:\[\begin{array}{l}\sigma = \frac{1}{{2\pi \Delta {\rm{h}}}}{\rm{(}}\frac{{\rm{1}}}{{{{\rm{R}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{R}}_{\rm{1}}}}}{\rm{)ln(}}\frac{{{{\rm{D}}_{\rm{2}}}{\rm{ - m}}}}{{{{\rm{D}}_{\rm{1}}}{\rm{ - m}}}}{\rm{ \bullet }}\frac{{{{\rm{r}}_{\rm{1}}}}}{{{{\rm{r}}_{\rm{2}}}}}{\rm{)}}\\{\rm{or}}\\\sigma = \frac{{{{\rm{K}}^*}}}{{\Delta {\rm{h}}}}{\rm{(}}\frac{{\rm{1}}}{{{{\rm{R}}_{\rm{2}}}}}{\rm{ - }}\frac{{\rm{1}}}{{{{\rm{R}}_{\rm{1}}}}}{\rm{)}}\end{array}\]Therefore, the procedure of demarcating the constant of the conductivity cell by using a know solution can be omitted.With this new mefhod, the experimental procedure has been simplified and the results proved accurate.

       

    • loading
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索
      Article views (233) PDF downloads(10) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看