• Volume 45 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
    Citation: LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002

    Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity

    doi: 10.13374/j.issn2095-9389.2021.08.02.002
    More Information
    • Corresponding author: E-mail: laixin@usst.edu.cn
    • Received Date: 2021-08-02
      Available Online: 2021-09-06
    • Publish Date: 2023-01-01
    • Lithium-ion batteries are widely used in energy storage and new energy electric vehicles due to their superior performance, but the internal short circuit problem of lithium-ion batteries is a safety hazard during usage for energy storage and vehicle battery packs. If it cannot be detected in time, the deepening of the internal short circuit will be accompanied by an increase in heat, which will cause thermal runaway and lead to safety accidents. Diagnosing whether the battery pack has an internal short circuit and quantitatively estimating the short circuit resistance of the battery cell that has the internal short circuit can effectively prevent the occurrence of thermal runaway. This study proposes a quantitative diagnosis algorithm of Internal short circuit (ISC) based on the remaining charge capacity based on the charging curve of the lithium-ion battery module. The simulation and experimental verification of the algorithm are carried out under the conditions of different voltage acquisition accuracies, sampling periods, temperatures, and aging degrees. The results show that the proposed algorithm can accurately and quantitatively diagnose the ISC under certain conditions: (1) For serious ISC of 10 Ω level, high diagnosis accuracy can be obtained even under the conditions of 10 mV acquisition accuracy, 10 s sampling period, and variable temperature. For early ISC of 100 Ω level, the ISC resistance is smaller than the actual value and the diagnosis time is longer. To improve the accuracy and timeliness of early ISC diagnosis, the voltage acquisition accuracy, and sampling frequency should be higher than 1 mV and 1 Hz, respectively. (2) Battery aging will reduce the accuracy of ISC diagnosis, but it has little effect on the 10 Ω level ISC, and the diagnostic error of the ISC resistance is less than 6% even at an extremely low temperature (?20 ℃). The conclusions are of great significance to improve the accuracy of quantitative diagnosis of ISC for lithium-ion batteries.

       

    • loading
    • [1]
      潘鳳文, 弓棟梁, 高瑩, 等. 基于魯棒H濾波的鋰離子電池SOC估計. 工程科學學報, 2021, 43(5):693

      Pan F W, Gong D L, Gao Y, et al. Lithium-ion battery state of charge estimation based on a robust H filter. Chin J Eng, 2021, 43(5): 693
      [2]
      Lai X, Zheng Y J, Zhou L, et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta, 2018, 278: 245 doi: 10.1016/j.electacta.2018.05.048
      [3]
      安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22

      An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
      [4]
      宋永華, 陽岳希, 胡澤春. 電動汽車電池的現狀及發展趨勢. 電網技術, 2011, 35(4):1 doi: 10.13335/j.1000-3673.pst.2011.04.009

      Song Y H, Yang Y X, Hu Z C. Present status and development trend of batteries for electric vehicles. Power Syst Technol, 2011, 35(4): 1 doi: 10.13335/j.1000-3673.pst.2011.04.009
      [5]
      Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246 doi: 10.1016/j.ensm.2017.05.013
      [6]
      陳澤宇, 熊瑞, 孫逢春. 電動汽車電池安全事故分析與研究現狀. 機械工程學報, 2019, 55(24):93 doi: 10.3901/JME.2019.24.093

      Chen Z Y, Xiong R, Sun F C. Research status and analysis for battery safety accidents in electric vehicles. J Mech Eng, 2019, 55(24): 93 doi: 10.3901/JME.2019.24.093
      [7]
      蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195

      Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195
      [8]
      鄭蕓菲. 鋰離子電池在濫用條件下的安全性研究. 船電技術, 2021, 41(2):44 doi: 10.3969/j.issn.1003-4862.2021.02.011

      Zheng Y F. Study on safety of lithium-ion battery under overuse conditions. Mar Electr Electron Eng, 2021, 41(2): 44 doi: 10.3969/j.issn.1003-4862.2021.02.011
      [9]
      甘偉, 韓孝耀. 基于小波降噪-曲線相似程度的鋰離子電池內短路故障診斷方法. 機械設計與制造工程, 2021, 50(5):57 doi: 10.3969/j.issn.2095-509X.2021.05.012

      Gan W, Han X Y. A lithium ion battery internal short circuit fault diagnosis method based on wavelet noise reduction and curve similarity. Mach Des Manuf Eng, 2021, 50(5): 57 doi: 10.3969/j.issn.2095-509X.2021.05.012
      [10]
      陳明彪, 白帆飛, 宋文吉, 等. 鋰離子電池多點內短路及物理場變化. 電池, 2021, 51(2):131 doi: 10.19535/j.1001-1579.2021.02.006

      Chen M B, Bai F F, Song W J, et al. Multi-point internal short circuit and physical field variation of Li-ion battery. Battery Bimon, 2021, 51(2): 131 doi: 10.19535/j.1001-1579.2021.02.006
      [11]
      Zheng Y J, Ouyang M G, Lu L G, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. J Power Sources, 2014, 247: 676
      [12]
      王淮斌, 李陽, 王欽正, 等. 三元鋰離子動力電池熱失控及蔓延特性實驗研究. 工程科學學報, 2021, 43(5):663

      Wang H B, Li Y, Wang Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse. Chin J Eng, 2021, 43(5): 663
      [13]
      王震坡, 袁昌貴, 李曉宇. 新能源汽車動力電池安全管理技術挑戰與發展趨勢分析. 汽車工程, 2020, 42(12):1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002

      Wang Z P, Yuan C G, Li X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles. Automot Eng, 2020, 42(12): 1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002
      [14]
      張亞軍, 王賀武, 馮旭寧, 等. 動力鋰離子電池熱失控燃燒特性研究進展. 機械工程學報, 2019, 55(20):17

      Zhang Y J, Wang H W, Feng X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries. J Mech Eng, 2019, 55(20): 17
      [15]
      Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage, 2018, 18: 26 doi: 10.1016/j.est.2018.04.020
      [16]
      Kong X D, Zheng Y J, Ouyang M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J Power Sources, 2018, 395: 358 doi: 10.1016/j.jpowsour.2018.05.097
      [17]
      Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213: 391 doi: 10.1016/j.jpowsour.2012.03.065
      [18]
      Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations. J Power Sources, 2011, 196(23): 10328
      [19]
      郭自清, 熊慶, 梁博航, 等. 基于橋接電容電流特性的鋰離子電池組一致性檢測方法. 高電壓技術, 2022, 48(5):1933

      Guo Z Q, Xiong Q, Liang B H, et al. Consistency detection approach for lithium-ion battery pack based on current characteristics of bridging capacitors. High Voltage Engineering, 2022, 48(5): 1933
      [20]
      陳晨, 朱瑞銀. 應用于特種設備的鋰離子電池一致性仿真研究. 電子測試, 2020(24):43 doi: 10.3969/j.issn.1000-8519.2020.24.015

      Chen C, Zhu R Y. Research on consistency simulation of lithium ion battery applied to special equipment. Electron Test, 2020(24): 43 doi: 10.3969/j.issn.1000-8519.2020.24.015
      [21]
      來鑫, 秦超, 鄭岳久, 等. 基于恒流充電曲線電壓特征點的鋰離子電池自適應容量估計方法. 汽車工程, 2019, 41(1):1 doi: 10.19562/j.chinasae.qcgc.2019.01.001

      Lai X, Qin C, Zheng Y J, et al. An adaptive capacity estimation scheme for lithium-ion battery based on voltage characteristic points in constant-current charging curve. Automot Eng, 2019, 41(1): 1 doi: 10.19562/j.chinasae.qcgc.2019.01.001
      [22]
      Zheng Y J, Lu L G, Han X B, et al. LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. J Power Sources, 2013, 226: 33 doi: 10.1016/j.jpowsour.2012.10.057
      [23]
      胡曉松, 唐小林. 電動車輛鋰離子動力電池建模方法綜述. 機械工程學報, 2017, 53(16):20 doi: 10.3901/JME.2017.16.020

      Hu X S, Tang X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles. J Mech Eng, 2017, 53(16): 20 doi: 10.3901/JME.2017.16.020
      [24]
      Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
      [25]
      Zhou L, Zheng Y J, Ouyang M G, et al. A study on parameter variation effects on battery packs for electric vehicles. J Power Sources, 2017, 364: 242 doi: 10.1016/j.jpowsour.2017.08.033
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (750) PDF downloads(112) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看