• Turn off MathJax
    Article Contents
    REN Jinchao, LI Jiachang, WANG Pingjiang, WEI Peng, ZHANG Xiaohan. Obstacle avoidance of a seven-joint manipulator based on double interpolation trajectory control[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.001
    Citation: REN Jinchao, LI Jiachang, WANG Pingjiang, WEI Peng, ZHANG Xiaohan. Obstacle avoidance of a seven-joint manipulator based on double interpolation trajectory control[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.001

    Obstacle avoidance of a seven-joint manipulator based on double interpolation trajectory control

    doi: 10.13374/j.issn2095-9389.2022.11.03.001
    More Information
    • Corresponding author: E-mail: pj_wang@hust.edu.cn
    • Received Date: 2022-11-03
      Available Online: 2023-03-28
    • In recent years, with advancements in industrial production requirements, the seven-joint manipulator—a representative of intelligent and automatic technology—has received extensive attention from scholars locally and abroad. One of the most fundamental technological aspects in the field of seven-joint manipulator research is the obstacle avoidance and trajectory control technology of the manipulator. In the field of obstacle avoidance of robotic arms, despite the fact that the traditional gradient projection method based on the obstacle avoidance index can achieve the purpose of obstacle avoidance, several challenges will continue to be encountered, including the decline of end tracking accuracy and the inability to accurately control the trajectory of joint linkage. Because of the aforementioned shortcomings, this paper proposes a novel manipulator trajectory control algorithm based on double interpolation, which is, in turn, based on the analytical solution of the seven-joint manipulator. This method utilizes the given position vector of the wrist joint center point of the manipulator to derive the interpolation operation equation of the position vector in the trajectory planner, thereby obtaining the rotation angle of the seventh joint self-motion according to the position vector of the wrist center point. The rotation value interpolated by each interpolation period is added to the seventh joint-angle value of the inverse solution joint vector calculated by the analytical solution. This leads to achieving the purpose of joint trajectory control. The double interpolation manipulator trajectory control algorithm can also calculate a group of joint-angle values using the general gradient projection method as a reference, conducting analytical solution selection to circumvent singular point effects. The new double interpolation manipulator trajectory control algorithm based on the modified seven-joint manipulator configuration has been tested on the LinuxCNC real-time control platform and the Matlab simulation platform, and the end accuracy of the manipulator is taken as the measurement index to verify both the effectiveness of the joint trajectory control of the manipulator based on this method and the superiority of the end accuracy control compared with the gradient projection method. After verification, the accuracy of the double interpolation trajectory control algorithm proposed in this paper is found to be at least 3.59 × 10?8 and 2.74 × 10?8 orders of magnitude higher than that of the gradient projection method and the singular robust inverse algorithm, respectively. In the case of a complex end motion trajectory, such as an arc trajectory, its accuracy may even be improved by 10?11 orders of magnitude. In summary, the trajectory control method based on double interpolation can be applied to the obstacle avoidance scenario without affecting the end trajectory because of its strong error control capability.

       

    • loading
    • [1]
      李佩娜. 粵港澳大灣區背景下東莞市傳統制造業轉型升級研究. 現代營銷(經營版), 2020(1):48

      Li P N. Research on the transformation and upgrading of Dongguan's traditional manufacturing industry under the background of Guangdong–Hong Kong–Macao–Greater Bay Area. Mark Manag Rev, 2020(1): 48
      [2]
      張崢. 工業機器人的智能化發展探究. 中國軍轉民, 2022(18):82 doi: 10.3969/j.issn.1008-5874.2022.18.043

      Zhang Z. Research on intelligent development of industrial robots. Def Ind Convers China, 2022(18): 82 doi: 10.3969/j.issn.1008-5874.2022.18.043
      [3]
      劉雋宏. 淺談工業機器人的發展趨勢. 新型工業化, 2022, 12(4):190

      Liu J H. On the development trend of industrial robots. J N Ind, 2022, 12(4): 190
      [4]
      岳曉明, 臧爍, 徐作珂, 等. 基于6自由度串聯機器人的電火花銑削加工軌跡規劃及伺服控制策略研究[J/OL]. 機械工程學報 (2022-12-26) [2023-03-28]. http://kns.cnki.net/kcms/detail/11.2187.TH.20221222.1934.006.html

      Yue X M, Zang S, Xu Z K, et al. Research on trajectory planning and servo control strategy for EDM milling based on 6-DOF series robots [J/OL]. J Mech Eng (2022-12-26) [2023-03-28]. http://kns.cnki.net/kcms/detail/11.2187.TH.20221222.1934.006.html
      [5]
      張志軍, 陳賀, 周娜, 等. 基于激光雷達的Bobac機器人S型障礙物避障軌跡規劃研究. 遼寧科技學院學報, 2023, 25(1):10

      Zhang Z J, Chen H, Zhou N, et al. Research on obstacle avoidance trajectory planning of bobac robot S-type obstacle based on LiDAR. J Liaoning Inst Sci Technol, 2023, 25(1): 10
      [6]
      周震, 姜笑言, 韓家哺. 基于三維點云的雙機器人協作打磨軌跡規劃研究. 智能計算機與應用, 2023, 13(1):77 doi: 10.3969/j.issn.2095-2163.2023.01.014

      Zhou Z, Jiang X Y, Han J B. Research on coordinated polishing trajectory planning of dual robots based on three-dimensional point cloud. Intell Comput Appl, 2023, 13(1): 77 doi: 10.3969/j.issn.2095-2163.2023.01.014
      [7]
      田溢汕, 李佳軒, 宋峰峰, 等. 超冗余機器人避障軌跡規劃. 汕頭大學學報(自然科學版), 2023, 38(1):23

      Tian Y S, Li J X, Song F F, et al. Obstacle avoidance trajectory planning for hyper-redundant robots. J Shantou Univ (Nat Sci Ed), 2023, 38(1): 23
      [8]
      霍鳳財, 遲金, 黃梓健, 等. 移動機器人路徑規劃算法綜述. 吉林大學學報(信息科學版), 2018, 36(6):639 doi: 10.3969/j.issn.1671-5896.2018.06.007

      Huo F C, Chi J, Huang Z J, et al. Review of path planning for mobile robots. J Jilin Univ (Inf Sci Ed), 2018, 36(6): 639 doi: 10.3969/j.issn.1671-5896.2018.06.007
      [9]
      王春穎, 劉平, 秦洪政. 移動機器人的智能路徑規劃算法綜述. 傳感器與微系統, 2018, 37(8):5

      Wang C Y, Liu P, Qin H Z. Review on intelligent path planning algorithm of mobile robots. Transducer Microsyst Technol, 2018, 37(8): 5
      [10]
      許哲, 王慶誠, 賈廣臣. 基于NSGA-Ⅱ算法的機械臂多目標軌跡優化. 制造業自動化, 2023, 45(1):180

      Xu Z, Wang Q C, Jia G C. Multi-target trajectory optimization of manipulator based on NSGA-Ⅱ. Manuf Autom, 2023, 45(1): 180
      [11]
      李尉, 鄧朝暉, 葛吉民, 等. 機器人關節空間軌跡規劃研究進展. 機械設計與制造工程, 2022, 51(10):15

      Li W, Deng Z H, Ge J M, et al. Research progress of joint space trajectory planning for robots. Mach Des Manuf Eng, 2022, 51(10): 15
      [12]
      郭萍. 工業機器人軌跡規劃研究. 中國新技術新產品, 2022(19):42 doi: 10.3969/j.issn.1673-9957.2022.19.014

      Guo P. Research on trajectory planning of industrial robot. N Technol N Prod China, 2022(19): 42 doi: 10.3969/j.issn.1673-9957.2022.19.014
      [13]
      于昊, 陳桂, 丁飛, 等. 串聯機器人運動學建模與軌跡規劃研究. 南京工程學院學報(自然科學版), 2022, 20(1):27

      Yu H, Chen G, Ding F, et al. Kinematics modeling and trajectory planning of serial robots. J Nanjing Inst Technol (Nat Sci Ed), 2022, 20(1): 27
      [14]
      陳雨, 張晉軒. 曲線擬合的機械臂避障軌跡規劃及仿真分析. 組合機床與自動化加工技術, 2021(9):162

      Chen Y, Zhang J X. Trajectory planning and simulation analysis of robot arm obstacle avoidance based on curve fitting. Modul Mach Tool Autom Manuf Tech, 2021(9): 162
      [15]
      王紅莉, 向國菲, 朱雨琪, 等. 基于PS-RRT算法的機械臂避障路徑規劃. 計算機應用研究, 2023, 40(1):42 doi: 10.19734/j.issn.1001-3695.2022.06.0287

      Wang H L, Xiang G F, Zhu Y Q, et al. Obstacle avoidance path planning of manipulator based on PS-RRT algorithm. Appl Res Comput, 2023, 40(1): 42 doi: 10.19734/j.issn.1001-3695.2022.06.0287
      [16]
      高其遠, 陳麗. 基于自運動的冗余機械臂實時避障軌跡規劃. 智能計算機與應用, 2022, 12(6):116

      Gao Q Y, Chen L. Real-time obstacle avoidance trajectory planning for redundant manipulators based on self-motion. Intell Comput Appl, 2022, 12(6): 116
      [17]
      羅國榮. 七關節機械臂運動學及軌跡規劃控制仿真分析. 北京工業職業技術學院學報, 2022, 21(2):6

      Luo G R. Simulation analysis of kinematics and trajectory planning control of seven-joint manipulator. J Beijing Polytech Coll, 2022, 21(2): 6
      [18]
      邱朋, 汪光, 趙理, 等. 采用改進人工勢場法的動態無人車路徑規劃. 機械設計與制造, 2023(3):291

      Qiu P, Wang G, Zhao L, et al. Unmanned vehicle path planning based on structured road improved artificial potential field method. Mach Des Manuf, 2023(3): 291
      [19]
      邱博, 單梁, 常路, 等. 基于改進人工勢場法雙向規劃的雙機械臂避碰路徑規劃. 江蘇科技大學學報(自然科學版), 2021, 35(5):72

      Qiu B, Shan L, Chang L, et al. Collision avoidance path planning of dual manipulators based on bidirectional planning of improved artificial potential field method. J Jiangsu Univ Sci Technol (Nat Sci Ed), 2021, 35(5): 72
      [20]
      Oriolo G, Cefalo M, Vendittelli M. Repeatable motion planning for redundant robots over cyclic tasks. IEEE Trans Robot, 2017, 33(5): 1170 doi: 10.1109/TRO.2017.2715348
      [21]
      郭新蘭. Q-learning算法下的機械臂軌跡規劃與避障行為研究. 機床與液壓, 2021, 49(9):57 doi: 10.3969/j.issn.1001-3881.2021.09.011

      Guo X L. Trajectory planning and obstacle avoidance of manipulator based on Q-learning algorithm. Mach Tool Hydraul, 2021, 49(9): 57 doi: 10.3969/j.issn.1001-3881.2021.09.011
      [22]
      張許有, 劉有余. 基于位置代價A*算法的機械臂避障路徑規劃. 機械設計, 2021, 38(2):108

      Zhang X Y, Liu Y Y. Path planning of obstacle avoidance for manipulators based on position cost A* algorithm. J Mach Des, 2021, 38(2): 108
      [23]
      Vigoriti F, Ruggiero F, Lippiello V, et al. Control of redundant robot arms with null-space compliance and singularity-free orientation representation. Robot Auton Syst, 2018, 100: 186 doi: 10.1016/j.robot.2017.11.007
      [24]
      李亞昕, 王國磊, 張劍輝, 等. 基于碰撞反饋的冗余機器人避障規劃算法. 清華大學學報(自然科學版), 2022, 62(3):408

      Li Y X, Wang G L, Zhang J H, et al. Obstacle avoidance algorithm for redundant robots based on collision feedback. J Tsinghua Univ (Sci Technol), 2022, 62(3): 408
      [25]
      劉雪飛, 徐向榮, 查文斌, 等. 一種零空間避障的機械臂末端軌跡跟蹤算法. 機械科學與技術, 2021, 40(7):1009 doi: 10.13433/j.cnki.1003-8728.20200457

      Liu X F, Xu X R, Zha W B, et al. A trajectory tracking algorithm of null space obstacle avoidance for end-effector of manipulators. Mech Sci Technol Aerosp Eng, 2021, 40(7): 1009 doi: 10.13433/j.cnki.1003-8728.20200457
      [26]
      張立棟, 李亮玉, 王天琪. 冗余度機器人梯度投影避障算法的改進. 機械科學與技術, 2015, 34(10):1511 doi: 10.13433/j.cnki.1003-8728.2015.1007

      Zhang L D, Li L Y, Wang T Q. Improvement of obstacle avoidance algorithm for a redundant robot based on gradient projection method. Mech Sci Technol Aerosp Eng, 2015, 34(10): 1511 doi: 10.13433/j.cnki.1003-8728.2015.1007
      [27]
      Gong M D, Li X D, Zhang L. Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator. IEEE Access, 2019, 7: 18662 doi: 10.1109/ACCESS.2019.2895741
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (257) PDF downloads(20) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看