• Turn off MathJax
    Article Contents
    ZHANG Shumin, DONG Zaizheng, YUAN Shuai, LI Yanjun. Hydrogen-based phase transformation and separation of high iron and low manganese ores[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.005
    Citation: ZHANG Shumin, DONG Zaizheng, YUAN Shuai, LI Yanjun. Hydrogen-based phase transformation and separation of high iron and low manganese ores[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.005

    Hydrogen-based phase transformation and separation of high iron and low manganese ores

    doi: 10.13374/j.issn2095-9389.2022.11.03.005
    More Information
    • Ferromanganese ore is an important raw material for the beneficiation and smelting of manganese and iron. The efficient separation of manganese and iron is challenging due to the isomorphism and dispersion of fine particles. The process of hydrogen-based mineral phase transformation and magnetic separation was developed, and the effects of roasting temperature, roasting time, reduction gas concentration, and total gas flow on the separation of ferromanganese and the rate of conversion of divalent manganese were investigated. Iron concentrate with 55.24% iron grade and 91.07% recovery and manganese concentrate with 34.80% manganese grade, 77.11% recovery, and 88.79% conversion of Mn2+ were obtained under the roasting temperature of 660 ℃, roasting duration of 30 min, volume ratio of carbon monoxide to hydrogen of 1∶3, reduction gas volume fraction of 60%, total gas flow rate of 500 mL·min–1, and magnetic field intensity of 8.51 × 104 A·m–1. Chemical composition analysis, X-ray diffraction (XRD) analysis, and scanning electron microscope-energy dispersion spectra (SEM-EDS) analysis confirmed the effective separation of manganese and iron minerals. The raw ore was mainly composed of limonite, pyrolusite, and quartz. Most weakly magnetic iron ores were transformed into strong magnetic iron minerals after suspension magnetization roasting, whereas pyrolusite was transformed into manganosite after reduction roasting. The primary iron mineral in the iron concentrate was magnetite, containing a small amount of metallic iron. The main manganese mineral in manganese concentrate was manganosite, and the gangue mineral was quartz. Due to the remarkable differences in the magnetic properties of the iron and manganese minerals, efficient separation was achieved through magnetic means. The content of divalent manganese in the manganese concentrate was increased considerably by controlling the process conditions during the hydrogen-based mineral phase transformation, enabling the manganese mineral to be extracted easily by leaching. Thus, the goal of full component utilization of the raw ore and tailless beneficiation was achieved. This novel approach for the clean and efficient utilization of high iron and low manganese ores holds promise for the conversion and synchronous separation of the iron and manganese minerals, achieving the goal of “source reduction, efficient conversion, and precise recovery,” and achieving excellent economic and social benefits.

       

    • loading
    • [1]
      劉陟娜, 許虹, 王秋舒, 等. 中國錳礦供需現狀及可持續發展建議. 資源與產業, 2015, 17(6):38

      Liu Z N, Xu H, Wang Q S, et al. China’s manganese supply-demand actuality and its sustainable development. Resour Ind, 2015, 17(6): 38
      [2]
      洪世琨. 我國錳礦資源開采現狀與可持續發展的研究. 中國錳業, 2011, 29(3):13 doi: 10.3969/j.issn.1002-4336.2011.03.004

      Hong S K. Status of China Mn-ore in resources exploitation and the sustainable development. China’s Manganese Ind, 2011, 29(3): 13 doi: 10.3969/j.issn.1002-4336.2011.03.004
      [3]
      劉鵬飛, 袁帥, 李艷軍, 等. 含鐵錳礦石資源概述及開發利用研究現狀. 中國錳業, 2021, 39(1):5

      Liu P F, Yuan S, Li Y J, et al. A research status of development and utilization of iron-bearing manganese ore resources. China’s Manganese Ind, 2021, 39(1): 5
      [4]
      Cheng Z, Zhu G C, Zhao Y N. Study in reduction-roast leaching manganese from low-grade manganese dioxide ores using cornstalk as reductant. Hydrometallurgy, 2008, 96(1-2): 176
      [5]
      Singh V, Biswas A. “Physicochemical processing of low grade ferruginous manganese ores”. Int J Miner Process, 2017, 158: 35 doi: 10.1016/j.minpro.2016.11.013
      [6]
      謝丹丹, 童雄, 張洪花, 等. 鐵錳礦的選礦工藝及其研究進展. 中國錳業, 2016, 34(2):4 doi: 10.14101/j.cnki.issn.1002-4336.2016.02.002

      Xie D D, Tong X, Zhang H H, et al. Research development and beneficiation technology of ferro–Mn ore. China’s Manganese Ind, 2016, 34(2): 4 doi: 10.14101/j.cnki.issn.1002-4336.2016.02.002
      [7]
      賈寶亮, 孫亞峰, 王小釗, 等. 陜西鎮安某高磷混合型鐵錳礦選礦實驗研究. 礦產綜合利用, 2021(1):83 doi: 10.3969/j.issn.1000-6532.2021.01.013

      Jia B L, Sun Y F, Wang X Z, et al. Experimental study on beneficiation of a high phosphorus mixed ferromanganese ore in Zhenan, Shaanxi Province. Multipurp Util Miner Resour, 2021(1): 83 doi: 10.3969/j.issn.1000-6532.2021.01.013
      [8]
      李長順. 某鐵錳礦磁化焙燒–磁選試驗. 現代礦業, 2018, 34(10):115 doi: 10.3969/j.issn.1674-6082.2018.10.032

      Li C S. Experiment on magnetizing roasting–magnetic separation of a ferromanganese ore. Mod Min, 2018, 34(10): 115 doi: 10.3969/j.issn.1674-6082.2018.10.032
      [9]
      李艷軍, 余建文, 韓躍新, 等. 難選鐵礦石流態化磁化焙燒研究新進展. 金屬礦山, 2019(2):2

      Li Y J, Yu J W, Han Y X, et al. Recent progress in magnetic reduction roasting of refractory iron ore via fluidized bed. Met Mine, 2019(2): 2
      [10]
      Liu B B, Zhang Y B, Wang J, et al. Investigations on the MnO2–Fe2O3 system roasted in air atmosphere. Adv Powder Technol, 2017, 28(9): 2167 doi: 10.1016/j.apt.2017.05.023
      [11]
      Gao L H, Liu Z G, Ge Y, et al. Synthesis and characterization of manganese ferrite Mn x Fe3– x O4 from ferruginous manganese ores by multi-step roasting and magnetic separation. Powder Technol, 2019, 356: 373 doi: 10.1016/j.powtec.2019.08.032
      [12]
      Yuan S, Zhou W T, Han Y X, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation. Powder Technol, 2020, 373: 689 doi: 10.1016/j.powtec.2020.07.005
      [13]
      Peng N, Pan Q L, Liu H, et al. Recovery of iron and manganese from iron-bearing manganese residues by multi-step roasting and magnetic separation. Miner Eng, 2018, 126: 177 doi: 10.1016/j.mineng.2018.07.002
      [14]
      朱德慶, 劉新奇, 潘建, 等. 高鐵錳礦熔融還原錳鐵分離工藝研究. 金屬礦山, 2017(3):59

      Zhu D Q, Liu X Q, Pan J, et al. Investigation on melting reduction-separation of iron and manganese on high-iron manganese ore. Met Mine, 2017(3): 59
      [15]
      Liu B B, Zhang Y B, Wang J, et al. A further investigation on the MnO2–Fe2O3 system roasted under CO–CO2 atmosphere. Adv Powder Technol, 2019, 30(2): 302 doi: 10.1016/j.apt.2018.11.006
      [16]
      Gao L H, Liu Z G, Yang Z C, et al. Synthesis and magnetism property of manganese ferrite MnFe2O4 by selective reduction and oxidization roasting process. Appl Surf Sci, 2020, 508: 145292 doi: 10.1016/j.apsusc.2020.145292
      [17]
      Liu P F, Yuan S, Sun Y S, et al. An efficient and green method to separate iron and manganese from ferromanganese ore by suspension magnetization roasting and magnetic separation. Powder Technol, 2022, 402: 117359 doi: 10.1016/j.powtec.2022.117359
      [18]
      韓躍新, 張琦, 李艷軍, 等. 海南石碌鐵礦石氫基礦相轉化新技術研究及應用. 中國礦業大學學報, 2022, 51(3):537 doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015

      Han Y X, Zhang Q, Li Y J, et al. Research and application of a new hydrogen-based phase transformation technology for Hainan-Shilv iron ore. J China Univ Min Technol, 2022, 51(3): 537 doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015
      [19]
      Tang Z D, Zhang Q, Sun Y S, et al. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation. Resour Conserv Recycl, 2021, 172: 105680 doi: 10.1016/j.resconrec.2021.105680
      [20]
      Yuan S, Liu X, Gao P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. J Hazard Mater, 2020, 394: 122579 doi: 10.1016/j.jhazmat.2020.122579
      [21]
      Cao Y E, Sun Y S, Gao P, et al. Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant. Int J Min Sci Technol, 2021, 31(6): 1075 doi: 10.1016/j.ijmst.2021.09.008
      [22]
      Yuan S, Zhou W T, Han Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology. Miner Eng, 2020, 152: 106359 doi: 10.1016/j.mineng.2020.106359
      [23]
      Liu B B, Zhang Y B, Su Z J, et al. A study on the carbonization and alloying process of MnO2 by methane-hydrogen gas mixture in the presence of Fe2O3. Powder Technol, 2018, 325: 271 doi: 10.1016/j.powtec.2017.11.010
      [24]
      Yuan S, Wang R F, Gao P, et al. Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals. Powder Technol, 2022, 396: 80 doi: 10.1016/j.powtec.2021.10.048
      [25]
      Yuan S, Zhou W T, Han Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron-bearing manganese ore. Powder Technol, 2020, 373: 73 doi: 10.1016/j.powtec.2020.06.032
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (209) PDF downloads(8) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看