Citation: | ZHANG Shumin, DONG Zaizheng, YUAN Shuai, LI Yanjun. Hydrogen-based phase transformation and separation of high iron and low manganese ores[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.005 |
[1] |
劉陟娜, 許虹, 王秋舒, 等. 中國錳礦供需現狀及可持續發展建議. 資源與產業, 2015, 17(6):38
Liu Z N, Xu H, Wang Q S, et al. China’s manganese supply-demand actuality and its sustainable development. Resour Ind, 2015, 17(6): 38
|
[2] |
洪世琨. 我國錳礦資源開采現狀與可持續發展的研究. 中國錳業, 2011, 29(3):13 doi: 10.3969/j.issn.1002-4336.2011.03.004
Hong S K. Status of China Mn-ore in resources exploitation and the sustainable development. China’s Manganese Ind, 2011, 29(3): 13 doi: 10.3969/j.issn.1002-4336.2011.03.004
|
[3] |
劉鵬飛, 袁帥, 李艷軍, 等. 含鐵錳礦石資源概述及開發利用研究現狀. 中國錳業, 2021, 39(1):5
Liu P F, Yuan S, Li Y J, et al. A research status of development and utilization of iron-bearing manganese ore resources. China’s Manganese Ind, 2021, 39(1): 5
|
[4] |
Cheng Z, Zhu G C, Zhao Y N. Study in reduction-roast leaching manganese from low-grade manganese dioxide ores using cornstalk as reductant. Hydrometallurgy, 2008, 96(1-2): 176
|
[5] |
Singh V, Biswas A. “Physicochemical processing of low grade ferruginous manganese ores”. Int J Miner Process, 2017, 158: 35 doi: 10.1016/j.minpro.2016.11.013
|
[6] |
謝丹丹, 童雄, 張洪花, 等. 鐵錳礦的選礦工藝及其研究進展. 中國錳業, 2016, 34(2):4 doi: 10.14101/j.cnki.issn.1002-4336.2016.02.002
Xie D D, Tong X, Zhang H H, et al. Research development and beneficiation technology of ferro–Mn ore. China’s Manganese Ind, 2016, 34(2): 4 doi: 10.14101/j.cnki.issn.1002-4336.2016.02.002
|
[7] |
賈寶亮, 孫亞峰, 王小釗, 等. 陜西鎮安某高磷混合型鐵錳礦選礦實驗研究. 礦產綜合利用, 2021(1):83 doi: 10.3969/j.issn.1000-6532.2021.01.013
Jia B L, Sun Y F, Wang X Z, et al. Experimental study on beneficiation of a high phosphorus mixed ferromanganese ore in Zhenan, Shaanxi Province. Multipurp Util Miner Resour, 2021(1): 83 doi: 10.3969/j.issn.1000-6532.2021.01.013
|
[8] |
李長順. 某鐵錳礦磁化焙燒–磁選試驗. 現代礦業, 2018, 34(10):115 doi: 10.3969/j.issn.1674-6082.2018.10.032
Li C S. Experiment on magnetizing roasting–magnetic separation of a ferromanganese ore. Mod Min, 2018, 34(10): 115 doi: 10.3969/j.issn.1674-6082.2018.10.032
|
[9] |
李艷軍, 余建文, 韓躍新, 等. 難選鐵礦石流態化磁化焙燒研究新進展. 金屬礦山, 2019(2):2
Li Y J, Yu J W, Han Y X, et al. Recent progress in magnetic reduction roasting of refractory iron ore via fluidized bed. Met Mine, 2019(2): 2
|
[10] |
Liu B B, Zhang Y B, Wang J, et al. Investigations on the MnO2–Fe2O3 system roasted in air atmosphere. Adv Powder Technol, 2017, 28(9): 2167 doi: 10.1016/j.apt.2017.05.023
|
[11] |
Gao L H, Liu Z G, Ge Y, et al. Synthesis and characterization of manganese ferrite Mn x Fe3– x O4 from ferruginous manganese ores by multi-step roasting and magnetic separation. Powder Technol, 2019, 356: 373 doi: 10.1016/j.powtec.2019.08.032
|
[12] |
Yuan S, Zhou W T, Han Y X, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation. Powder Technol, 2020, 373: 689 doi: 10.1016/j.powtec.2020.07.005
|
[13] |
Peng N, Pan Q L, Liu H, et al. Recovery of iron and manganese from iron-bearing manganese residues by multi-step roasting and magnetic separation. Miner Eng, 2018, 126: 177 doi: 10.1016/j.mineng.2018.07.002
|
[14] |
朱德慶, 劉新奇, 潘建, 等. 高鐵錳礦熔融還原錳鐵分離工藝研究. 金屬礦山, 2017(3):59
Zhu D Q, Liu X Q, Pan J, et al. Investigation on melting reduction-separation of iron and manganese on high-iron manganese ore. Met Mine, 2017(3): 59
|
[15] |
Liu B B, Zhang Y B, Wang J, et al. A further investigation on the MnO2–Fe2O3 system roasted under CO–CO2 atmosphere. Adv Powder Technol, 2019, 30(2): 302 doi: 10.1016/j.apt.2018.11.006
|
[16] |
Gao L H, Liu Z G, Yang Z C, et al. Synthesis and magnetism property of manganese ferrite MnFe2O4 by selective reduction and oxidization roasting process. Appl Surf Sci, 2020, 508: 145292 doi: 10.1016/j.apsusc.2020.145292
|
[17] |
Liu P F, Yuan S, Sun Y S, et al. An efficient and green method to separate iron and manganese from ferromanganese ore by suspension magnetization roasting and magnetic separation. Powder Technol, 2022, 402: 117359 doi: 10.1016/j.powtec.2022.117359
|
[18] |
韓躍新, 張琦, 李艷軍, 等. 海南石碌鐵礦石氫基礦相轉化新技術研究及應用. 中國礦業大學學報, 2022, 51(3):537 doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015
Han Y X, Zhang Q, Li Y J, et al. Research and application of a new hydrogen-based phase transformation technology for Hainan-Shilv iron ore. J China Univ Min Technol, 2022, 51(3): 537 doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203015
|
[19] |
Tang Z D, Zhang Q, Sun Y S, et al. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation. Resour Conserv Recycl, 2021, 172: 105680 doi: 10.1016/j.resconrec.2021.105680
|
[20] |
Yuan S, Liu X, Gao P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. J Hazard Mater, 2020, 394: 122579 doi: 10.1016/j.jhazmat.2020.122579
|
[21] |
Cao Y E, Sun Y S, Gao P, et al. Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant. Int J Min Sci Technol, 2021, 31(6): 1075 doi: 10.1016/j.ijmst.2021.09.008
|
[22] |
Yuan S, Zhou W T, Han Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology. Miner Eng, 2020, 152: 106359 doi: 10.1016/j.mineng.2020.106359
|
[23] |
Liu B B, Zhang Y B, Su Z J, et al. A study on the carbonization and alloying process of MnO2 by methane-hydrogen gas mixture in the presence of Fe2O3. Powder Technol, 2018, 325: 271 doi: 10.1016/j.powtec.2017.11.010
|
[24] |
Yuan S, Wang R F, Gao P, et al. Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals. Powder Technol, 2022, 396: 80 doi: 10.1016/j.powtec.2021.10.048
|
[25] |
Yuan S, Zhou W T, Han Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron-bearing manganese ore. Powder Technol, 2020, 373: 73 doi: 10.1016/j.powtec.2020.06.032
|