• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    從鳥群群集飛行到無人機自主集群編隊

    邱華鑫 段海濱

    邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊[J]. 工程科學學報, 2017, 39(3): 317-322. doi: 10.13374/j.issn2095-9389.2017.03.001
    引用本文: 邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊[J]. 工程科學學報, 2017, 39(3): 317-322. doi: 10.13374/j.issn2095-9389.2017.03.001
    QIU Hua-xin, DUAN Hai-bin. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317-322. doi: 10.13374/j.issn2095-9389.2017.03.001
    Citation: QIU Hua-xin, DUAN Hai-bin. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317-322. doi: 10.13374/j.issn2095-9389.2017.03.001

    從鳥群群集飛行到無人機自主集群編隊

    doi: 10.13374/j.issn2095-9389.2017.03.001
    基金項目: 

    國家杰出青年科學基金資助項目(61425008);國家自然科學基金資助項目(61333004);北京航空航天大學博士研究生卓越學術基金資助項目(2016年度)

    詳細信息
    • 中圖分類號: V249.1

    From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation

    • 摘要: 無人機可通過自主集群編隊提高其在復雜環境下執行任務的能力.多飛行器并存導致系統協調管理難度提升等一系列問題,因此如何設計合理高效的無人機集群編隊協調自主控制算法是一個亟待解決的難點問題.在鳥群群集飛行過程中,個體通過遵循簡單行為規則進行相互合作而產生復雜有序的集體行為.由于鳥群群集飛行過程中所表現出的鄰近交互性、群體穩定性和環境適應性等特點與無人機集群編隊的自主、協調和智能等控制要求有著緊密的契合之處,因此,研究鳥群群集飛行機制,并將其映射到無人機集群系統,是解決無人機集群編隊協調自主控制問題的一條切實可行的途徑.

       

    • [2] Lundquist E H. Drone duties:the dull, the dirty, and the dangerous. Naval Forces, 2003, 24(3):20
      [6] Duan H B, Shao S, Su B W, et al. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci China Technol Sci, 2010, 53(8):2025
      [8] Qiu H X, Wei C, Dou R, et al. Fully autonomous flying:From collective motion in bird flocks to unmanned aerial vehicle autonomous swarms. Sci China Inf Sci, 2015, 58(12):1
      [9] Bajec I L, Heppner F H. Organized flight in birds. Anim Behav, 2009, 78(4):777
      [10] Ballerini M, Cabibbo N, Candelier R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance:evidence from a field study. Proc Nat Acad Sci, 2008, 105(4):1232
      [11] Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks. Proc Nat Acad Sci, 2010, 107(26):11865
      [12] Attanasi A, Cavagna A, Del Castello L, et al. Information transfer and behavioural inertia in starling flocks. Nat Phys, 2014, 10:691
      [13] Pearce D J G, Miller A M, Rowlands G, et al. Role of projection in the control of bird flocks. Proc Nat Acad Sci, 2014, 111(29):10422
      [14] Nagy M, Ákos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks. Nature, 2010, 464(7290):890
      [15] Nagy M, Vásárhelyi G, Pettit B, et al. Context-dependent hierarchies in pigeons. Proc Nat Acad Sci, 2013, 110(32):13049
      [16] Zafeiris A, Vicsek T. Advantages of hierarchical organization:from pigeon flocks to optimal network structures//Research in the Decision Sciences for Global Business:Best Papers from the 2013 Annual Conference. New Jersey:Pearson Education, 2015
      [17] Zhang H T, Chen Z Y, Vicsek T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks. Sci Rep, 2014, 4:5805
      [18] Yomosa M, Mizuguchi T, Vásárhelyi G, et al. Coordinated behaviour in pigeon flocks. PLoS ONE, 2015, 10(10):e0140558
      [19] Nepusz T, Vicsek T. Hierarchical self-organization of non-cooperating individuals. PLoS ONE, 2013, 8(12):e81449
      [20] Reynolds C W. Flocks, herds and schools:a distributed behavioral model. ACM SIGGRAPH Comput Graphics, 1987, 21(4):25
      [21] Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 1995, 75(6):1226
      [22] Yang W, Cao L, Wang X F, et al. Consensus in a heterogeneous influence network. Phys Rev E, 2006, 74(3):037101
      [23] Li W, Wang X F. Adaptive velocity strategy for swarm aggregation. Phys Rev E, 2006, 75(2):021917
      [24] Couzin I D, Krause J, James R, et al. Collective memory and spatial sorting in animal groups. J Theor Biol, 2002, 218(1):1
      [25] Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Autom Control, 2007, 52(5):852
      [26] Cavagna A, Giardina I, Grigera T S, et al. Silent flocks:constraints on signal propagation across biological groups. Phys Rev Lett, 2015, 114(21):218101
      [27] Toner J, Tu Y H. Long-range order in a two-dimensional dynamical XY model:how birds fly together. Phys Rev Lett, 1995, 75(23):4326
      [28] Cavagna A, Del Castello L, Giardina I, et al. Flocking and turning:a new model for self-organized collective motion. J Stat Phys, 2015, 158(3):601
      [30] Hauert S, Leven S, Varga M, et al. Reynolds flocking in reality with fixed-wing robots:communication range vs. maximum turning rate//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, 2011:5015
      [31] Vásárhelyi G, Virágh C, Somorjai G, et al. Outdoor flocking and formation flight with autonomous aerial robots//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). Chicago, 2014:3866
      [32] Virágh C, Vásárhelyi G, Tarcai N, et al. Flocking algorithm for autonomous flying robots. Bioinspir Biomim, 2014, 9(2):025012
      [33] Saska M. MAV-swarms:unmanned aerial vehicles stabilized along a given path using onboard relative localization//Proceedings of 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Denver, 2015:894
      [34] Duan H B, Luo Q N, Shi Y H, et al. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration. IEEE Comput Intell Mag, 2013, 8(3):16
      [35] Duan H B, Luo Q N, Yu Y X. Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles. Sci China Technol Sci, 2013, 56(5):1066
      [36] Qiu H X, Duan H B. Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dyn, 2014, 78(3):1973
      [38] Biro D, Sasaki T, Portugal S J. Bringing a time-depth perspective to collective animal behavior. Trends Ecol Evol, 2016, 31(7):550
    • 加載中
    計量
    • 文章訪問數:  1528
    • HTML全文瀏覽量:  491
    • PDF下載量:  130
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-10-13

    目錄

      /

      返回文章
      返回
      中文字幕在线观看