• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于實驗與3D-CAFE法的高硅鋼鑄錠凝固行為

    宋煒 張炯明 王順璽

    宋煒, 張炯明, 王順璽. 基于實驗與3D-CAFE法的高硅鋼鑄錠凝固行為[J]. 工程科學學報, 2017, 39(3): 360-368. doi: 10.13374/j.issn2095-9389.2017.03.007
    引用本文: 宋煒, 張炯明, 王順璽. 基于實驗與3D-CAFE法的高硅鋼鑄錠凝固行為[J]. 工程科學學報, 2017, 39(3): 360-368. doi: 10.13374/j.issn2095-9389.2017.03.007
    SONG Wei, ZHANG Jiong-ming, WANG Shun-xi. Solidification behavior of high-silicon steel based on experimental and 3D-CAFE method[J]. Chinese Journal of Engineering, 2017, 39(3): 360-368. doi: 10.13374/j.issn2095-9389.2017.03.007
    Citation: SONG Wei, ZHANG Jiong-ming, WANG Shun-xi. Solidification behavior of high-silicon steel based on experimental and 3D-CAFE method[J]. Chinese Journal of Engineering, 2017, 39(3): 360-368. doi: 10.13374/j.issn2095-9389.2017.03.007

    基于實驗與3D-CAFE法的高硅鋼鑄錠凝固行為

    doi: 10.13374/j.issn2095-9389.2017.03.007
    詳細信息
    • 中圖分類號: TG142.71

    Solidification behavior of high-silicon steel based on experimental and 3D-CAFE method

    • 摘要: 通過空冷和水冷實驗研究了高硅鋼的鑄態組織,發現高硅鋼鑄態組織主要由粗大的柱狀晶構成,水冷鑄錠中柱狀晶比例高達90%以上.依據鑄錠的化學成分和晶粒統計結果,確定了3D-CAFE法模擬所需的枝晶生長動力學系數及高斯分布等參數.采用CAFE法對不同冷卻條件下高硅鋼的凝固過程進行模擬研究,發現空冷鑄錠較水冷鑄錠的溫度場更均勻,糊狀區更寬闊;空冷鑄錠呈“過渡式”凝固,水冷鑄錠呈“分層式”凝固;空冷流場較水冷流場更穩定,凝固末期冒口處出現明顯的抽吸現象,而水冷模擬結果中未觀察到該現象.組織模擬結果發現,模擬得到的高硅鋼凝固組織無論是形貌還是晶粒尺寸都與實驗結果相一致;最后通過改變澆注溫度模擬研究了過熱度對高硅鋼凝固組織的影響,結果表明,隨著過熱度的降低,鑄錠中心等軸晶率提高,晶粒數量增加,晶粒尺寸變得細小.

       

    • [2] Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6. 5% Si steel sheet. J Magn Magn Mater, 1996, 160:109
      [7] Spittle J A, Brown S G R. Computer simulation of the effects of alloy variables on the grain structures of castings. Acta Metall, 1989, 37(7):1803
      [8] Wang S L, Sekerka R F, Wheeler A A, et al. Thermodynamically-consistent phase-field models for solidification. Phys D, 1993, 69(1-2):189
      [9] Natsume Y, Ohsasa K, Narita T. Phase-field simulation of transient liquid phase bonding process of Ni using Ni-P binary filler metal. Mater Trans, 2003, 44(5):819
      [11] Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater, 1993, 41(2):345
      [12] Gandin C A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater, 1997, 45(5):2187
      [13] Gandin C A, Desbiolles J L, Rappaz M, et al. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metall Mater Trans A, 1999, 30(12):3153
      [15] Luo Y Z, Zhang J M, Wei X D, et al. Numerical simulation of solidification structure of high carbon SWRH77B billet based on the CAFE method. Ironmaking Steelmaking, 2012, 39(1):26
      [16] Jing C L, Wang X H, Jiang M. Study on solidification structure of wheel steel round billet using FE-CA coupling model. Steel Res Int, 2011, 82(10):1173
      [17] Wang J L, Wang F M, Zhao Y Y, et al. Numerical simulation of 3D-microstructures in solidification processes based on the CAFE method. Int J Miner Metall Mater, 2009, 16(6):640
      [18] Hou Z B, Jiang F, Cheng G G. Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method. ISIJ Int, 2012, 52(7):1301
      [19] Kattner U R. The thermodynamic modeling of multicomponent phase equilibria. JOM, 1997, 49(12):14
      [20] Thevoz P, Desbiolles J L, Rappaz M. Modeling of equiaxed microstructure formation in casting. Metall Trans A, 1989, 20(2):311
      [21] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall, 1986, 34(5):823
      [22] Gandin C A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater, 1994, 42(7):2233
      [23] Kovac F, Stoyka V, Petryshynets I. Strain-induced grain growth in non-oriented electrical steels. J Magn Magn Mater, 2008, 320(20):e627
      [25] Song W, Zhang J M, Liu Y, et al. Numerical simulation of solidification structure of 6. 5 wt-% Si steel ingot slab. Ironmaking Steelmaking, 2015, 42(9):656
      [26] Pickering E J. Macrosegregation in steel ingots:the applicability of modelling and characterisation techniques. ISIJ Int, 2013, 53(6):935
      [27] Patil P, Nalawade R, Balachandran G, et al. Analysis of solidification behaviour of low alloy steel ingot casting-simulation and experimental validation. Ironmaking Steelmaking, 2015, 42(7):512
    • 加載中
    計量
    • 文章訪問數:  884
    • HTML全文瀏覽量:  376
    • PDF下載量:  21
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-05-12

    目錄

      /

      返回文章
      返回
      中文字幕在线观看