• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    304不銹鋼在模擬壓水堆一回路水中高溫電化學腐蝕行為

    汪家梅 陸輝 張樂福 孟凡江 徐雪蓮

    汪家梅, 陸輝, 張樂福, 孟凡江, 徐雪蓮. 304不銹鋼在模擬壓水堆一回路水中高溫電化學腐蝕行為[J]. 工程科學學報, 2017, 39(3): 399-406. doi: 10.13374/j.issn2095-9389.2017.03.012
    引用本文: 汪家梅, 陸輝, 張樂福, 孟凡江, 徐雪蓮. 304不銹鋼在模擬壓水堆一回路水中高溫電化學腐蝕行為[J]. 工程科學學報, 2017, 39(3): 399-406. doi: 10.13374/j.issn2095-9389.2017.03.012
    WANG Jia-mei, LU Hui, ZHANG Le-fu, MENG Fan-jiang, XU Xue-lian. Electrochemical corrosion behavior of 304 stainless steel in simulated pressurized water reactor primary water[J]. Chinese Journal of Engineering, 2017, 39(3): 399-406. doi: 10.13374/j.issn2095-9389.2017.03.012
    Citation: WANG Jia-mei, LU Hui, ZHANG Le-fu, MENG Fan-jiang, XU Xue-lian. Electrochemical corrosion behavior of 304 stainless steel in simulated pressurized water reactor primary water[J]. Chinese Journal of Engineering, 2017, 39(3): 399-406. doi: 10.13374/j.issn2095-9389.2017.03.012

    304不銹鋼在模擬壓水堆一回路水中高溫電化學腐蝕行為

    doi: 10.13374/j.issn2095-9389.2017.03.012
    基金項目: 

    重大專項CAP1400關鍵設計技術研究資助項目(2010ZX06002-001)

    詳細信息
    • 中圖分類號: TL341

    Electrochemical corrosion behavior of 304 stainless steel in simulated pressurized water reactor primary water

    • 摘要: 通過模擬壓水堆一回路水環境,研究了氯離子濃度和溶解氧對304不銹鋼高溫電化學腐蝕行為的影響.動電位極化曲線結果表明,氯離子濃度主要影響高電位下的二次鈍化效應,低電位下影響效果不明顯,結合X射線光電子能譜對氧化膜元素成分的分析發現二次鈍化效應與氧化膜中Fe/Cr元素含量比密切相關.電化學阻抗譜和掃描電鏡結果表明,隨著氯離子濃度增加,氧化膜阻抗逐漸降低,表面外層氧化物顆粒和間隙逐漸增大,耐腐蝕性能降低.隨著溶解氧含量的升高,304自腐蝕電位逐漸升高,鈍化電流密度降低,鈍化區間縮小,表面氧化膜阻抗逐漸增加.

       

    • [1] Da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment. Corros Sci, 1998, 40(2):447
      [2] Anoop M B, Rao K B, Lakshmanan N. Safety assessment of austenitic steel nuclear power plant pipelines against stress corrosion cracking in the presence of hybrid uncertainties. Int J Pressure Vessels Piping, 2008, 85(4):238
      [3] Li Y K, Lu S P, Li D Z, et al. Remaining life prediction of the core shroud due to stress corrosion cracking failure in BWRs using numerical simulations. J Nucl Sci Technol, 2015, 52(1):96
      [4] Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators:Part Ⅱ. Chemical composition and structure of tube surfaces. J Nucl Mat, 2006, 348(1):191
      [5] Bosch R W, Féron D, Celis J P. Electrochemistry in Light Water Reactors:Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues. Washington:CRC Press, 2007
      [6] Duan Z, Arjmand F, Zhang L, et al. Investigation of the corrosion behavior of 304L and 316L stainless steels at high-temperature borated and lithiated water. J Nucl Sci Technol, 2015, 53(9):1
      [7] Niedrach L W. Use of a high temperature pH sensor as a "Pseudo-Reference Electrode" in the monitoring of corrosion and redox potentials at 285℃. J Electrochem Soc, 1982, 129(7):1445
      [8] Lin C C, Smith F R, Ichikawa N, et al. Electrochemical potential measurements under simulated BWR water chemistry conditions. Corrosion, 1992, 48(1):16
      [9] Kim Y J. Analysis of oxide film formed on type 304 stainless steel in 288 C water containing oxygen, hydrogen, and hydrogen peroxide. Corrosion, 1999, 55(1):81
      [10] Pourbaix M. Altas of electrochemical equilibria in aqueous solutions. Houston:NACE, 1966
      [11] Beverskog B, Puigdomenech I. Pourbaix diagrams for the ternary system of iron-chromium-nickel. Corrosion, 1999, 55(11):1077
      [12] Chen C M, Aral K, Theus G J. Computer-calculated Potential pH Diagrams to 300℃. Volume 2:Handbook of Diagrams. EPRI NP-3137. Alliance:The Babcock & WilcoX Company, 1983
      [13] Tachibana M, Ishida K, Wada Y, et al. Determining factors for anodic polarization curves of typical structural materials of boiling water reactors in high temperature-high purity water. J Nucl Sci Technol, 2012, 49(2):253
      [14] Li X H, Wang J Q, Han E H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water. Corros Sci, 2013, 67:169
      [15] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros Sci, 1998, 40(2):337
      [16] Ziemniak S E, Hanson M, Sander P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros Sci, 2008, 50(9):2465
      [17] Cristofaro N De, Piantini M, Zacchetti N. The influence of temperature on the passivation behaviour of a super duplex stainless steel in a boric-borate buffer solution. Corros Sci, 1997, 39(12):2181
      [18] Robertson J. The mechanism of high temperature aqueous corrosion of steel. Corros Sci, 1989, 29(11):1275
      [19] Kocijan A, Donik Č, Jenko M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions. Corros Sci, 2007, 49(5):2083
      [20] Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water. Corros Sci, 2012, 59:334
      [21] Huang J B, Wu X Q, Han E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments. Corros Sci, 2010, 52(10):3444
      [22] Feng Z C, Cheng X Q, Dong C F, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel. J Nucl Mater, 2010, 407(3):171
    • 加載中
    計量
    • 文章訪問數:  704
    • HTML全文瀏覽量:  211
    • PDF下載量:  16
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-05-09

    目錄

      /

      返回文章
      返回
      中文字幕在线观看