• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理

    侯隴剛 趙鳳 莊林忠 張濟山

    侯隴剛, 趙鳳, 莊林忠, 張濟山. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理[J]. 工程科學學報, 2017, 39(3): 432-442. doi: 10.13374/j.issn2095-9389.2017.03.016
    引用本文: 侯隴剛, 趙鳳, 莊林忠, 張濟山. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理[J]. 工程科學學報, 2017, 39(3): 432-442. doi: 10.13374/j.issn2095-9389.2017.03.016
    HOU Long-gang, ZHAO Feng, ZHUANG Lin-zhong, ZHANG Ji-shan. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties[J]. Chinese Journal of Engineering, 2017, 39(3): 432-442. doi: 10.13374/j.issn2095-9389.2017.03.016
    Citation: HOU Long-gang, ZHAO Feng, ZHUANG Lin-zhong, ZHANG Ji-shan. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties[J]. Chinese Journal of Engineering, 2017, 39(3): 432-442. doi: 10.13374/j.issn2095-9389.2017.03.016

    基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理

    doi: 10.13374/j.issn2095-9389.2017.03.016
    基金項目: 

    國家自然科學基金資助項目(51401016);北京市教委共建資助項目

    詳細信息
    • 中圖分類號: TG146.2

    Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties

    • 摘要: 為解決T6態高強鋁合金強度高而耐蝕性難以滿足使用需求,采用三級時效工藝來改善析出強化相特別是晶界析出相的形貌、尺寸、分布等,并通過研究不同回歸處理制度對組織、性能的影響而獲得適宜7B50鋁合金中厚板的三級時效工藝.研究發現提高回歸溫度或延長回歸時間均會使中厚板心部及表層組織的晶內和晶界析出相發生粗化并析出穩定η-MgZn2相,導致強度下降、電導率上升,其中回歸溫度對強度和電導率的影響顯著.三級時效處理雖使晶內析出相尺寸有所增加,但卻使T6態連續分布的晶界析出相呈斷續分布,結合心部和表層強度及電導率測量結果認為合適的回歸處理制度為165℃/6 h.然而,熱軋引起中厚板表層較心部更為嚴重的變形使表層含有更多的亞晶或亞結構且其分布更均勻,從而使表層更快到達峰時效,進一步的回歸再時效處理則使表層析出更多穩定η相,而η相的形成與晶內析出相的粗化長大是造成表層和心部強度差異的關鍵.雖然淬火/三級時效態表層和心部的晶粒結構存在差異,且局部出現亞晶合并長大,但其對強度的提升效果遠低于表層析出穩定η相所引起的強度下降.可見,三級時效工藝并不能緩解7B50鋁合金中厚板心部和表層的性能差異,但可使表層和心部的強度、電導率滿足某實際工況要求.

       

    • [1] Staley J T, Liu J, Hunt W H Jr, et al. Aluminum alloys for aerostructures. Adv Mater Processes, 1997, 152(4):17
      [2] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1):102
      [3] Williams J C, Jr Starke E A. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51(19):5775
      [5] Spiedel M O. Stress corrosion cracking of aluminum alloys. Metall Trans A, 1975, 6:631
      [6] Osaki S, Itoh D, Nakai M. SCC properties of 7050 series aluminum alloys in T6 and RRA tempers. Jpn Inst Light Met, 2001, 51(4):222
      [7] Ramgopal T, Gouma P I, Frankel G S. Role of grain-boundary precipitates and solute depleted zone on the intergranular corrosion of aluminum alloy 7150. Corrosion, 2002, 58(8):687
      [8] Puiggali M, Zienlinski A, Olive J M, et al. Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy. Corros Sci, 1998, 40(4):805
      [9] Cina B M. Reducing the Susceptibility of Alloys, Particularly Aluminium Alloys, to Stress Corrosion Cracking:US Patent, 3856584. 1974-12-24
      [10] Kanno M, Araki I, Cui Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment. Mater Sci Technol, 1994, 10:599
      [11] Park J K. Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6. Mater Sci Eng A, 1988, 103(2):223
      [12] Robinson J S, Tanner D A, Whelan S D. Retrogression, reaging and residual stresses in 7010 forgings. Fatigue Fract Eng Mater Struct, 1999, 22(1) 51
      [13] Viana F, Pinto A M P, Santos H M C, et al. Retrogression and re-ageing of 7075 aluminium alloy:microstructural characterization. J Mater Process Technol, 1999, 92-93:54
      [14] Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy. Acta Mater, 2010, 58(14):4814
      [15] Li G F, Zhang X M, Li P H, et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050. Trans Nonferrous Met Soc China, 2010, 20(6):935
      [17] Ma C Q, Hou L G, Zhang J S, et al. Experimental and numerical investigations of the plastic deformation during multi-pass asymmetric and symmetric rolling of high-strength aluminum alloys. Mater Sci Forum, 2014, 794-796:1157
      [18] Tsai T C, Chuang T H. Relationship between electrical conductivity and stress corrosion cracking susceptibility of Al 7075 and Al 7475 alloys. Corrosion, 1996, 52(6):414
      [19] Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Mater Sci Eng A, 2003, 356(1):326
      [20] Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Mater, 2004, 52(15):4503
      [22] Song R. G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu Alloy. Acta Mater, 2004, 52(16):4727
      [23] Meng Q C, Fan X G, Ren S Y, et al. Comparison of microstructure and corrosion properties of Al-Zn-Mg-Cu alloys 7150 and 7010. Trans Nonferrous Met Soc China, 2006, 16(A3):s1356
      [25] Huo W T, Hou L G, Lang Y J, et al. Improved thermo-mechanical processing for effective grain refinement of high-strength AA 7050 Al alloy. Mater Sci Eng A, 2015, 626:86
      [26] El-Baradie Z M, El-Sayed M. Effect of double thermomechanical treatments on the properties of 7075 Al alloy. J Mater Process Technol, 1996, 62(1):76
      [27] Berg L K, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater, 2001, 49(17):3443
      [28] Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050. Mater Sci Eng A, 2008, 492(1):1
      [29] Kumar M, Poletti C, Degischer H P. Precipitation kinetics in warm forming of AW-7020 alloy. Mater Sci Eng A, 2013, 561:362
    • 加載中
    計量
    • 文章訪問數:  637
    • HTML全文瀏覽量:  191
    • PDF下載量:  18
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-05-12

    目錄

      /

      返回文章
      返回
      中文字幕在线观看