• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    BP神經網絡IF鋼鋁耗的預測模型

    張思源 包燕平 張超杰 林路

    張思源, 包燕平, 張超杰, 林路. BP神經網絡IF鋼鋁耗的預測模型[J]. 工程科學學報, 2017, 39(4): 511-519. doi: 10.13374/j.issn2095-9389.2017.04.005
    引用本文: 張思源, 包燕平, 張超杰, 林路. BP神經網絡IF鋼鋁耗的預測模型[J]. 工程科學學報, 2017, 39(4): 511-519. doi: 10.13374/j.issn2095-9389.2017.04.005
    ZHANG Si-yuan, BAO Yan-ping, ZHANG Chao-jie, LIN Lu. Prediction model of aluminum consumption with BP neural networks in IF steel production[J]. Chinese Journal of Engineering, 2017, 39(4): 511-519. doi: 10.13374/j.issn2095-9389.2017.04.005
    Citation: ZHANG Si-yuan, BAO Yan-ping, ZHANG Chao-jie, LIN Lu. Prediction model of aluminum consumption with BP neural networks in IF steel production[J]. Chinese Journal of Engineering, 2017, 39(4): 511-519. doi: 10.13374/j.issn2095-9389.2017.04.005

    BP神經網絡IF鋼鋁耗的預測模型

    doi: 10.13374/j.issn2095-9389.2017.04.005
    基金項目: 

    鋼鐵冶金新技術國家重點實驗室自主課題(41616003)

    國家自然科學基金資助項目(51404022)

    詳細信息
    • 中圖分類號: TF769.4

    Prediction model of aluminum consumption with BP neural networks in IF steel production

    • 摘要: 為了解決某鋼廠IF鋼冶煉RH精煉過程鋁耗偏高問題,通過數理統計和BP神經網絡相結合的方法建立了鋁耗預測模型,并與多元線性回歸模型進行比較,該模型具有更高準確度.該模型分析了不同冶煉工藝參數對鋁耗的具體影響,并對相應工藝參數進行了優化.結果表明:脫碳結束氧活度或RH進站氧活度降低0.005%左右,每噸鋼鋁耗可降低0.07~0.08 kg,鋁脫氧有效利用系數為70.31%~80.35%;RH進站鋼液溫度增加35~40℃,鋁耗降低1 kg左右,鋁熱反應升溫利用系數在97.4%左右;吹氧量小于100 m3和大于100 m3時,氧氣與鋁反應的比例分別為37.3%和74.6%左右,吹氧量每增加50 m3,鋁耗分別增加0.1 kg和0.2 kg左右.工藝參數優化后平均鋁耗由1.359 kg降低到1.113 kg,降幅達18.1%.

       

    • [1] Longauerová M, Federová M, Longauer S, et al. Distribution of microalloying elements and impurities in surface zone of CC IF steel. Ironmaking Steelmaking, 2009,36(3):176
      [2] Yang W, Zhang L F, Wang X H, et al. Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment. ISIJ Int, 2013,53(8):1401
      [5] Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013,53(3):450
      [6] Zinngrebe E, Van Hoek C, Visser H, et al. Inclusion population evolution in Ti-alloyed Al-killed steel during secondary steelmaking process. ISIJ Int, 2012,52(1):52
      [7] Yang S F, Li J S, Wang Z F, et al. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment. Int J Miner Metall Mater, 2011,18(1):18
      [10] Guo Z H, Wu J, Lu H Y, et al. A case study on a hybrid wind speed forecasting method using BP neural network. Knowl Based Syst, 2011, 24(7):1048
      [11] Sadeghi B H M. A BP-neural network predictor model for plastic injection molding process. J Mater Process Technol, 2000, 103(3):411
      [12] Zhang L P, Wu K, Zhong Y F, et al. A new sub-pixel mapping algorithm based on a BP neural network with an observation model. Neurocomputing, 2008, 71(10):2046
      [14] Chaudhury A, Khatirkar R, Viswanathan N N, et al. Low silicon non-grain-oriented electrical steel:linking magnetic properties with metallurgical factors. J Magn Magn Mater, 2007, 313(1):21
    • 加載中
    計量
    • 文章訪問數:  754
    • HTML全文瀏覽量:  226
    • PDF下載量:  23
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-07-25

    目錄

      /

      返回文章
      返回
      中文字幕在线观看