• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鈦和釩對高錳鋼高溫熱延性的影響

    劉洪波 劉建華 丁浩 吳博威 張杰 蘇曉峰

    劉洪波, 劉建華, 丁浩, 吳博威, 張杰, 蘇曉峰. 鈦和釩對高錳鋼高溫熱延性的影響[J]. 工程科學學報, 2017, 39(4): 520-528. doi: 10.13374/j.issn2095-9389.2017.04.006
    引用本文: 劉洪波, 劉建華, 丁浩, 吳博威, 張杰, 蘇曉峰. 鈦和釩對高錳鋼高溫熱延性的影響[J]. 工程科學學報, 2017, 39(4): 520-528. doi: 10.13374/j.issn2095-9389.2017.04.006
    LIU Hong-bo, LIU Jian-hua, DING Hao, WU Bo-wei, ZHANG Jie, SU Xiao-feng. Influence of Ti and V on the hot ductility of high manganese austenitic steel[J]. Chinese Journal of Engineering, 2017, 39(4): 520-528. doi: 10.13374/j.issn2095-9389.2017.04.006
    Citation: LIU Hong-bo, LIU Jian-hua, DING Hao, WU Bo-wei, ZHANG Jie, SU Xiao-feng. Influence of Ti and V on the hot ductility of high manganese austenitic steel[J]. Chinese Journal of Engineering, 2017, 39(4): 520-528. doi: 10.13374/j.issn2095-9389.2017.04.006

    鈦和釩對高錳鋼高溫熱延性的影響

    doi: 10.13374/j.issn2095-9389.2017.04.006
    基金項目: 

    國家自然科學基金資助項目(51574022)

    詳細信息
    • 中圖分類號: TG142.1+3

    Influence of Ti and V on the hot ductility of high manganese austenitic steel

    • 摘要: 運用Gleeble-3500熱力模擬試驗機對700~1200℃溫度范圍內高錳鋼Mn13單獨加入鈦(質量分數0.10%)、復合添加鈦(質量分數0.11%)和釩(質量分數0.20%)后的高溫熱延性進行測試.采用掃描電鏡和X射線能譜分析儀對不同溫度下拉伸斷裂后試樣的斷口形貌以及斷口處的析出粒子進行了分析.溫度-斷面收縮率曲線表明在高錳鋼中加入0.10%鈦后,其斷面收縮率出現了一定程度的下降,這表明鈦的加入惡化了高錳鋼的熱延性;在此基礎上加入0.20%釩,高錳鋼的熱延性出現了進一步的下降,即鈦和釩的復合加入嚴重惡化了高錳鋼的熱延性.利用Thermo-Calc熱力學計算軟件對單獨含鈦以及復合含鈦釩的高錳鋼在700~1600℃存在的平衡析出相進行了計算,計算結果表明Ti (C,N)的平衡析出溫度均約為1499℃,遠大于其液相線溫度,這說明Ti (C,N)在高錳鋼的液相中就可以開始析出.掃描電鏡-能譜分析結果表明在奧氏體晶界以及三叉晶界處存在大量的Ti (C,N)和(Ti,V) C粒子,這些粒子的出現抑制了動態再結晶的發生,并且加速了晶界附近裂紋的擴展.

       

    • [1] Hutchinson B, Ridley N. On dislocation accumulation and work hardening in Hadfield steel. Scripta Mater, 2006, 55(4):299
      [2] Efstathiou C, Sehitoglu H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Mater, 2010, 58(5):1479
      [5] Mintz B. The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ Int, 1999, 39(9):833
      [6] Comineli O, Abushosha R, Mintz B. Influence of titanium and nitrogen on hot ductility of C-Mn-Nb-Al steels. Mater Sci Technol, 1999, 15(9):1058
      [7] Abushosha R, Comineli O, Mintz B. Influence of Ti on hot ductility of C-Mn-Al steels. Mater Sci Technol, 1999, 15(3):278
      [8] Luo H W, KarjalainenL P, Porter D A, et al. The influence of Ti on the hot ductility of Nb-bearing steels in simulated continuous casting process. ISIJ Int, 2002, 42(3):273
      [11] Brimacombe J K, Sorimachi K. Crack formation in the continuous casting of steel. Metall Trans B, 1977, 8(2):489
      [13] Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int Mater Rev,1991, 36(1):187
      [14] Mintz B, Abushosha R. Influence of vanadium on hot ductility of steel. Ironmaking Steelmaking, 1993, 20(6):445
      [15] Bank K M, Tuling A, Mintz B. The influence of N on hot ductility of V-, Nb-, and Nb-Ti-containing steels using improved thermal simulation of continuous casting. J S Afr Inst Min Met, 2011, 111(10):711
      [16] Vedani M, Ripamonti D, Mannucci A, et al. Hot ductility of microalloyed steels. La Metall Ital, 2008(5):19
      [17] Maehara Y, Yasumoto K, Tomono H, et al. Surface cracking mechanism of continuously cast low carbon low alloy steel slabs. Mater Sci Technol, 1990, 6(9):793
      [18] Revaux T, Guérin J D, Bricout J P. Hot ductility study of continuous casting steels. J Mater Sci Technol, 2004, 20:19
      [19] Mohamed Z. Hot ductility behavior of vanadium containing steels. Mater Sci Eng A, 2002, 326(2):255
      [20] Crowther D N, Mintz B. Influence of grain size and precipitation on hot ductility of microalloyed steels. Mater Sci Technol, 1986, 2(11):1099
      [21] Qian G Y, Cheng G G, Hou Z B. Effect of the induced ferrite and precipitates of Nb-Ti bearing steel on the ductility of continuous casting slab. ISIJ Int, 2014, 54(7):1611
      [22] Cho K C, Mun D J, Koo Y M, et al. Effect of niobium and titanium addition on the hot ductility of boron containing steel. Mater Sci Eng A, 2011, 528(10):3556
      [23] Cho K C, Mun D J, Kim J Y, et al. Effect of boron precipitation behavior on the hot ductility of boron containing steel. Metall Mater Trans A, 2010, 41(6):1421
      [24] Cho K C, Mun D J, Kang M H, et al. Effect of thermal cycle and nitrogen content on the hot ductility of boron-bearing steel. ISIJ Int, 2010, 50(6):839
      [25] Cho K C, Koo Y M, Park J. Effect of cooling rate on the hot ductility of boron bearing steel during continuous casting (study for prevention of corner crack on continuous casting slab). J Korean Inst Met Mater, 2008, 46(6):329
      [26] Brune T, Senk D, Walpot R, et al. Hot ductility behavior of boron containing microalloyed steels with varying manganese contents. Metall Mater Trans B, 2015, 46(3):1400
      [27] Mejia I, Salas-Reyes A E, Bedolla-Jacuinde A, et al. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel. Mater Sci Eng A, 2014, 616:229
      [28] Chen X M, Song S H, Sun Z C, et al. Effect of microstructural features on the hot ductility of 2.25Cr-1Mo steel. Mater Sci Eng A, 2010, 527(10):2725
      [29] Lee C H, Park J Y, Chung J H, et al. Hot ductility of medium carbon steel with vanadium. Mater Sci Eng A, 2016, 651:192
      [31] Mintz B, Crowther D N. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting. Int Mater Rev, 2010, 55(3):168
      [32] Baradaran A H, Zarei-Hanzaki A, Abedi H R, et al. The ductility behavior of a high-Mn twining plasticity steel during cold-tohot deformation. Mater Sci Eng A, 2013, 561:411
      [33] Mejia I, Salas-Reyes A E, Calvo J, et al. Effect of Ti and B miroaddition on the hot ductility behavior of a high-Mn austenitic Fe-23Mn-1.5Al-1.3Si-0.5C TWIP steel. Mater Sci Eng A, 2015, 648:311
      [34] Hamada A S, Karjalainen L P. Hot ductility behaviour of highMn TWIP steels. Mater Sci Eng A, 2011, 528(3):1819
      [37] Kang S E, Tuling A, Banerjee J R, et al. Hot ductility of TWIP steels. Mater Sci Technol, 2011, 27(1):95
      [38] Ryan N D, McQueen H J. Comparison of dynamic softening in 301, 304, 316 and 317 stainless steels. High Temp Technol, 1990, 8(3):185
      [39] McQueen H J, Jonas J J. Recent advances in hot working:fundamental dynamic softening mechanisms. J Appl Metalwork, 1984, 3(3):233
      [40] McQueen H J, Jin N, Ryan N D. Relationship of energy dissipation efficiency to microstructural evolution in hot working of AISI 304 steel. Mater Sci Eng A, 1995, 190(1-2):43
      [41] Salas-Reyes A E, Mejia I, Bedolla-Jacuinde A, et al. Hot ductility of high-Mn austenitic Fe-22Mn-1.5Al-1.5Si-0.45C TWIP steels microalloyed with Ti and V. Mater Sci Eng A, 2014, 611:77
      [42] Charleux M, Poole W J, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall Mater Trans B, 2001, 32(7):1635
    • 加載中
    計量
    • 文章訪問數:  762
    • HTML全文瀏覽量:  270
    • PDF下載量:  24
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-07-07

    目錄

      /

      返回文章
      返回
      中文字幕在线观看