• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    二氧化硫復合鹽霧環境下2024-T351鋁合金應力腐蝕開裂

    滿成 張歡 董超芳 余強 肖葵 李曉剛

    滿成, 張歡, 董超芳, 余強, 肖葵, 李曉剛. 二氧化硫復合鹽霧環境下2024-T351鋁合金應力腐蝕開裂[J]. 工程科學學報, 2017, 39(4): 542-549. doi: 10.13374/j.issn2095-9389.2017.04.009
    引用本文: 滿成, 張歡, 董超芳, 余強, 肖葵, 李曉剛. 二氧化硫復合鹽霧環境下2024-T351鋁合金應力腐蝕開裂[J]. 工程科學學報, 2017, 39(4): 542-549. doi: 10.13374/j.issn2095-9389.2017.04.009
    MAN Cheng, ZHANG Huan, DONG Chao-fang, YU Qiang, XIAO Kui, LI Xiao-gang. Stress corrosion cracking of 2024-T351 aluminum alloy in SO2 mixed salt spray environment[J]. Chinese Journal of Engineering, 2017, 39(4): 542-549. doi: 10.13374/j.issn2095-9389.2017.04.009
    Citation: MAN Cheng, ZHANG Huan, DONG Chao-fang, YU Qiang, XIAO Kui, LI Xiao-gang. Stress corrosion cracking of 2024-T351 aluminum alloy in SO2 mixed salt spray environment[J]. Chinese Journal of Engineering, 2017, 39(4): 542-549. doi: 10.13374/j.issn2095-9389.2017.04.009

    二氧化硫復合鹽霧環境下2024-T351鋁合金應力腐蝕開裂

    doi: 10.13374/j.issn2095-9389.2017.04.009
    詳細信息
    • 中圖分類號: TG172.3

    Stress corrosion cracking of 2024-T351 aluminum alloy in SO2 mixed salt spray environment

    • 摘要: 通過SO2復合鹽霧試驗模擬工業污染海洋大氣環境,結合有限元模擬分析、掃描電鏡/能譜儀、光電子能譜分析等技術研究2024-T351鋁合金在彈性應力區間的應力腐蝕開裂行為.結果表明:應力腐蝕開裂行為優先發生在2024-T351鋁合金C型環的頂部應力集中區域;疏松的腐蝕產物層的形貌經歷了由細棒狀、團絮狀到板塊狀的變化;試驗6 h就可以監測到裂紋,進行到480 h的時候有貫穿裂紋形成,720 h的時候試樣完全斷裂;裂紋為穿晶和沿晶混合機制,主裂紋以穿晶機制沿C型環法線擴展,二次裂紋沿晶界擴展.

       

    • [1] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des, 2014, 56:862
      [2] Cui Z Y, Li X G, Xiao K, et al. Exfoliation corrosion behavior of 2Bo6 aluminum alloy in a tropical marine atmosphere. J Mater Eng Perform, 2015, 24(1):296
      [3] De La Fuente D, Otero-Huerta E, Morcillo M. Studies of longterm weathering of aluminium in the atmosphere. Corros Sci, 2007, 49(7):3134
      [4] Misak H E, Perel V Y, Sabelkin V, et al. Biaxial tension-tension fatigue crack growth behavior of 2024-T3 under ambient air and salt water environments. Eng Fract Mech, 2014, 118:83
      [7] Tsai T C, Chuang T H. Atmospheric stress corrosion cracking of a superplastic 7475 aluminum alloy. Metall Mater Trans A, 1996, 27(9):2617
      [8] Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China. Corros Sci, 2012, 59:63
      [11] Sun S Q, Zheng Q F, Li D F, et al. Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China. Corros Sci, 2011, 53(8):2527
      [12] Kermanidis A T, Petroyiannis P V, Pantelakis S G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy. Theor Appl Fract Mech, 2005, 43(1):121
      [13] Lacroix L, Blanc C, Pebere N, et al. Simulating the galvanic coupling between S-Al2 CuMg phase particles and the matrix of 2024 aerospace aluminum alloy. Corros Sci, 2012, 64:213
      [14] Burns J T, Larsen J M, Gangloff R P. Driving forces for localized corrosion-to-fatigue crack transition in Al-Zn-Mg-Cu. Fatigue Fract Eng Mater Struct, 2011, 34(10):745
      [15] Sheng H, Dong C F, Xiao K, et al. Anodic dissolution of a crack tip at AA2024-T351 in 3.5 wt% NaCl solution. Int J Miner Metall Mater, 2012, 19(10):939
      [16] Pidaparti R M, Patel R R. Correlation between corrosion pits and stresses in Al alloys. Mater Lett, 2008, 62(30):4497
    • 加載中
    計量
    • 文章訪問數:  749
    • HTML全文瀏覽量:  278
    • PDF下載量:  16
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-07-09

    目錄

      /

      返回文章
      返回
      中文字幕在线观看