• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于夾雜-細晶粒區-魚眼疲勞失效的超長壽命預測模型

    鄧海龍 李偉 孫振鐸 張震宇

    鄧海龍, 李偉, 孫振鐸, 張震宇. 基于夾雜-細晶粒區-魚眼疲勞失效的超長壽命預測模型[J]. 工程科學學報, 2017, 39(4): 567-573. doi: 10.13374/j.issn2095-9389.2017.04.012
    引用本文: 鄧海龍, 李偉, 孫振鐸, 張震宇. 基于夾雜-細晶粒區-魚眼疲勞失效的超長壽命預測模型[J]. 工程科學學報, 2017, 39(4): 567-573. doi: 10.13374/j.issn2095-9389.2017.04.012
    DENG Hai-long, LI Wei, SUN Zhen-duo, ZHANG Zhen-yu. Aprediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area) -fisheye induced fatigue failure[J]. Chinese Journal of Engineering, 2017, 39(4): 567-573. doi: 10.13374/j.issn2095-9389.2017.04.012
    Citation: DENG Hai-long, LI Wei, SUN Zhen-duo, ZHANG Zhen-yu. Aprediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area) -fisheye induced fatigue failure[J]. Chinese Journal of Engineering, 2017, 39(4): 567-573. doi: 10.13374/j.issn2095-9389.2017.04.012

    基于夾雜-細晶粒區-魚眼疲勞失效的超長壽命預測模型

    doi: 10.13374/j.issn2095-9389.2017.04.012
    基金項目: 

    國家自然科學基金資助項目(51305027)

    詳細信息
    • 中圖分類號: TG111.8

    Aprediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area) -fisheye induced fatigue failure

    • 摘要: 本文旨在研究夾雜-細晶粒區-魚眼誘發疲勞失效的超長壽命預測模型.基于Cr-Ni-W合金鋼疲勞試驗結果,結合局部應力-壽命法和位錯-能量法,分別構建了局部裂紋萌生壽命模型(LCIL)和考慮夾雜及細晶粒區影響的裂紋萌生壽命模型(IFCIL),并與Tanaka-Mura模型(T-M)進行了對比分析.其次,分別對細晶粒區內的小裂紋擴展行為和細晶粒區外魚眼內的長裂紋擴展行為進行建模,最終形成了包含裂紋萌生和擴展在內的全壽命預測模型.結果表明,考慮夾雜及細晶粒區影響的裂紋萌生壽命模型(IFCIL)有較高的預測精度;對應細晶粒區的裂紋萌生壽命幾乎等同于全壽命;裂紋擴展壽命僅占據全壽命很小的一部分;預測結果全部處于2倍偏差以內,即全壽命模型可有效地用于夾雜-細晶粒區-魚眼誘發失效的超長壽命預測.

       

    • [3] Sakai T, Sato Y, Oguma N. Characteristic S-N properties of highcarbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct, 2002, 25(8):765
      [4] Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct, 2002, 25(8):735
      [5] Shiozawa K, Lu L T, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct, 2001, 24(12):781
      [6] Wang Q Y, Bathias C, Kawagoishi N, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue, 2002, 24(12):1269
      [7] Huang Z Y, Wagner D, Bathias C, et al. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta Mater, 2010, 58(18):6046
      [8] Chapetti M D, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels:Part Ⅱ. Estimation of fatigue limit for failure from internal inclusions. Mater Sci Eng A, 2003, 356(1):236
      [9] Murakami Y, Miller K J. What is fatigue damage?a view point from the observation of low cycle fatigue process. Int J Fatigue, 2005, 27(8):991
      [10] Sun C Q, Lei Z Q, Xie J J, et al. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fisheye mode failure. Int J Fatigue, 2013, 48:19
      [11] Stanzl-Tschegg S, Sch nbauer B. Near-threshold fatigue crack propagation and internal cracks in steel. Procedia Eng, 2010, 2(1):1547
      [12] Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A, 1982, 13(1):117
      [13] Tanaka K, Akiniwa Y. Modelling of small fatigue crack growth interacting with grain boundary. Eng Fract Mech, 1986, 24(6):803
      [14] Marines-Garcia I, Paris P C, Tada H, et al. Fatigue crack growth from small to long cracks in very-high-cycle fatigue with surface and internal "fish-eye" failures for ferrite-perlitic low carbon steel SAE 8620. Mater Sci Eng A, 2007, 468-470:120
      [15] Stepanskiy L G. Cumulative model of very high cycle fatigue. Fatigue Fract Eng Mater Struct, 2012, 35(6):513
      [16] Cerullo M. Sub-surface fatigue crack growth at alumina inclusions in AISI 52100 roller bearings. Procedia Eng, 2014, 74:333
      [17] Choi Y, Liu C R. Rolling contact fatigue life of finish hard machined surfaces:Part 1. Model development. Wear, 2006, 261:485
      [18] Liu C R, Choi Y. Rolling contact fatigue life model incorporating residual stress scatter. Int J Mech Sci, 2008, 50(12):1572
      [19] Chan K S. A microstructure-based fatigue-crack-initiation model. Metall Mater Trans A, 2003, 34(1):43
      [20] Venkataraman G, Chung Y W, Nakasone Y, et al. Free-energy formulation of fatigue crack initiation along persistent slip bands:calculation of S-N curves and crack depths. Acta Metall Mater, 1990, 38(1):31
      [21] Murakami Y, Aoki S. Stress Intensity Factors Handbook. Japan:Pergamon, 1987
      [22] Paris P C, Tada H, Donald J K. Service load fatigue damage-a historical perspective. Int J Fatigue, 1999, 21(Suppl 1):S35
    • 加載中
    計量
    • 文章訪問數:  766
    • HTML全文瀏覽量:  293
    • PDF下載量:  24
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-07-06

    目錄

      /

      返回文章
      返回
      中文字幕在线观看