• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于關聯關系的仿真模型實時智能推薦方法

    范國超 許承東 胡春生 宋丹

    范國超, 許承東, 胡春生, 宋丹. 基于關聯關系的仿真模型實時智能推薦方法[J]. 工程科學學報, 2017, 39(4): 626-633. doi: 10.13374/j.issn2095-9389.2017.04.019
    引用本文: 范國超, 許承東, 胡春生, 宋丹. 基于關聯關系的仿真模型實時智能推薦方法[J]. 工程科學學報, 2017, 39(4): 626-633. doi: 10.13374/j.issn2095-9389.2017.04.019
    FAN Guo-chao, XU Cheng-dong, HU Chun-sheng, SONG Dan. Real-time intelligent recommendation method of a simulation model based on incidence relation[J]. Chinese Journal of Engineering, 2017, 39(4): 626-633. doi: 10.13374/j.issn2095-9389.2017.04.019
    Citation: FAN Guo-chao, XU Cheng-dong, HU Chun-sheng, SONG Dan. Real-time intelligent recommendation method of a simulation model based on incidence relation[J]. Chinese Journal of Engineering, 2017, 39(4): 626-633. doi: 10.13374/j.issn2095-9389.2017.04.019

    基于關聯關系的仿真模型實時智能推薦方法

    doi: 10.13374/j.issn2095-9389.2017.04.019
    基金項目: 

    國家自然科學基金資助項目(61502257,41304031)

    詳細信息
    • 中圖分類號: TP391.9

    Real-time intelligent recommendation method of a simulation model based on incidence relation

    • 摘要: 當全球導航衛星系統(global navigation satellite system,GNSS)分布式仿真環境中共享的模型數量非常多時,檢索模型和配置仿真任務將成為一個比較復雜的工程.為提高仿真模型選取和仿真任務配置的效率,設計了一套針對GNSS分布式仿真環境中仿真模型的實時智能推薦方法,方法中首先定義了模型關聯關系和接口形狀的概念,然后提出了一種條件約束下的頻繁模式樹(FP-tree)結構,并從理論上分析了該結構在檢索任務量方面的減少程度,設計并推導了模型關聯關系度的計算方法,以及整套智能推薦方法的運行流程.推薦方法在GNSS分布式仿真環境中進行了仿真驗證,仿真結果與傳統智能推薦方法做對比分析,分析結果表明,該方法針對仿真模型推薦時運行時間短,推薦結果準確度高,能夠實時為用戶推薦合適的模型.

       

    • [1] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commun ACM, 2010, 53(4):50
      [2] Mell P, Grance T. The NIST Definition of Cloud Computing. NIST Special Publication 800-145, 2011
      [3] Baun C, Kunze M, Nimis J, et al. Cloud Computing Web-based Dynamic it Services. Berlin:Springer-Verlag, 2011
      [4] Miller M. Cloud Computing:Web-Based Applications that Change the Way You Work and Collaborate Online. Indianapolis:QUE Publishing Company, 2008
      [6] Buyya R, Ranjan R, Calheiros R N. Modeling and simulation of scalable cloud computing environments and the CloudSim toolkit:challenges and opportunities//International Conference on High Performance Computing&Simulation. IEEE, Leipzig, 2009:1
      [7] Fang B L, Yin X, Tan Y, et al. The contributions of cloud technologies to smart grid. Renewable Sustainable Energy Rev, 2016, 59:1326
      [8] Vrba P, Marik V, Siano P, et al. A review of agent and service-oriented concepts applied to intelligent energy systems. IEEE Trans Ind Inf, 2014, 10(3):1890
      [9] Tsai W T, Bai X Y, Huang Y. Software-as-a-service (SaaS):perspectives and challenges. Sci China Inf Sci, 2014, 57(5):1
      [10] Wu D Z, Greer M J, Rosen D W, et al. Cloud manufacturing:strategic vision and state-of-the-art. J Manuf Syst, 2013, 32(4):564
      [13] Armbrust M, Fox A, Griffith R, et al. Above the Clouds:A Berkely View of Cloud Computing. University of California Berkeley, 2009
      [15] Hu C S, Xu C D, Fan G C, et al. A simulation model design method for cloud-based simulation environment. Adv Mech Eng, 2013(8):1
      [17] Park D H, Kim H K, Choi I Y, et al. A literature review and classification of recommender systems research. Expert Syst Appl, 2012, 39(11):10059
      [18] Borràs J, Moreno A, Valls A. Intelligent tourism recommender systems:a survey. Expert Syst Appl, 2014, 41(16):7370
      [19] Chen S N, Qian H Y, Gu J Y. A recommender system for mobile commerce based on relational learning//9th International Workshop Multi-disciplinary Trends in Artificial Intelligence, MIWAI 2015. Fuzhou, 2015, 9426:415
      [20] Han J S, Kim G J. A method of intelligent recommendation using task ontology. Cluster Comput, 2014, 17(3):827
      [21] Dai C Y, Chen L. An algorithm for mining frequent closed itemsets in data stream. Phys Procedia, 2012, 24:1722
      [22] Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Beijing:China Machine Press, 2010:363
    • 加載中
    計量
    • 文章訪問數:  617
    • HTML全文瀏覽量:  202
    • PDF下載量:  12
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-06-23

    目錄

      /

      返回文章
      返回
      中文字幕在线观看