• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    分區分級雙P型輻射管噴口結構位置特性

    徐錢 馮俊小 周聞華 陳艷梅

    徐錢, 馮俊小, 周聞華, 陳艷梅. 分區分級雙P型輻射管噴口結構位置特性[J]. 工程科學學報, 2017, 39(5): 756-761. doi: 10.13374/j.issn2095-9389.2017.05.014
    引用本文: 徐錢, 馮俊小, 周聞華, 陳艷梅. 分區分級雙P型輻射管噴口結構位置特性[J]. 工程科學學報, 2017, 39(5): 756-761. doi: 10.13374/j.issn2095-9389.2017.05.014
    XU Qian, FENG Jun-xiao, ZHOU Wen-hua, CHEN Yan-mei. Location characteristics of the nozzle structure in the double P-type radiant tube[J]. Chinese Journal of Engineering, 2017, 39(5): 756-761. doi: 10.13374/j.issn2095-9389.2017.05.014
    Citation: XU Qian, FENG Jun-xiao, ZHOU Wen-hua, CHEN Yan-mei. Location characteristics of the nozzle structure in the double P-type radiant tube[J]. Chinese Journal of Engineering, 2017, 39(5): 756-761. doi: 10.13374/j.issn2095-9389.2017.05.014

    分區分級雙P型輻射管噴口結構位置特性

    doi: 10.13374/j.issn2095-9389.2017.05.014
    基金項目: 

    “十三五”國家重點科技支撐計劃資助項目(2016YFB0601300)

    詳細信息
    • 中圖分類號: TF062

    Location characteristics of the nozzle structure in the double P-type radiant tube

    • 摘要: 為了對分區分級雙P型燃氣輻射管噴口結構、位置進行優化,提高燃燒效率.首先對分區分級雙P型燃氣輻射管進行了實驗和數值研究,結果發現,除NOx體積分數的誤差為11.6%外,其他參數的偏差都在1%以內,證明該模型具有可靠性.在此基礎上,通過研究主管和支管的噴口位置及噴口結構等參數,進行了氣體溫度和壁面溫度的研究分析.結果顯示:隨著主管噴口位置向外移動,分區分級燃氣輻射管表面溫度的最高值逐漸減小,壁面溫度的最低值逐漸增大.支管噴口位于三通管與支管交線處時,可以減少高溫氣體對輻射管管壁的沖擊作用,提高支管徑向的溫度均勻性,延長輻射管使用壽命;主管噴口的形式為完全預混式噴口時,壁面溫差最小;支管噴口的形式為不對稱式時,分區分級燃氣輻射管壁面溫差最小,燃燒熱效率最高.

       

    • [1] Ahanj M D, Rahimi M, Alsairafi A A. CFD modeling of a radiant tube heater. Int Commun Heat Mass Transfer, 2012, 39(3):432
      [2] Zhong G Q, Wang D F, Wu D H. Application of double-regenerative radiant tube technology on roller hearth normalizing furnace. Energ Procedia, 2015, 66:201
      [3] Tsioumanis N, Brammer J G, Hubert J. Flow processes in a radiant tube burner:combusting flow. Energ Convers Manage, 2011, 52(7):2667
      [4] Irfan M, Chapman W. Thermal stresses in radiant tubes:a comparison between recuperative and regenerative systems. Appl Therm Eng, 2010, 30(2):196
      [7] Liu J X, Gao S, Jiang X M, et al. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2, atmosphere. Energ Convers Manage, 2014, 77:349
      [8] Wu H, Kim Y J, Vandadi V, et al. Experiment on superadiabatic radiant burner with augmented preheating. Appl Energ, 2015, 156:390
      [10] Saleh H E. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester. Renewable Energ, 2009, 34(10):2178
      [13] Saravanan P, Sahoo G, Srikanth S, et al. Failure analysis of radiant tube burners in continuous annealing line (CAL) of an integrated steel plant. J Failure Anal Prevention, 2011, 11(3):286
      [14] Hájek J, Jegla Z, Vondál J. Numerical analysis of radiant section of fired heater focused on the effect of wall-tube distance. Comput Aided Chem Eng, 2014, 33:331
      [15] Jegla Z, Hájek J, Vondál J. Numerical analysis of heat transfer in radiant section of fired heater with realistic imperfect geometry of tube coil. Chem Eng Trans, 2014, 39:889
      [16] Normann F, Andersson K, Leckner B, et al. High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel, 2008, 87(17):3579
      [18] Reihani A, Razavi S A, Abbasi E, et al. Failure analysis of welded radiant tubes made of cast heat-resisting steel. J Failure Anal Prevention, 2013, 13(6):658
      [19] Gao H L, Li H Y, Shi Y Z, et al. Discussion on the structure of low-temperature radiant heater of gate station. Appl Mech Mat, 2015, 700:660
      [21] Li X, Zhang J, Yang H, et al. Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Appl Therm Eng, 2016, 112:296
    • 加載中
    計量
    • 文章訪問數:  630
    • HTML全文瀏覽量:  248
    • PDF下載量:  9
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-07-04

    目錄

      /

      返回文章
      返回
      中文字幕在线观看