• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于最大池化稀疏編碼的煤巖識別方法

    伍云霞 田一民

    伍云霞, 田一民. 基于最大池化稀疏編碼的煤巖識別方法[J]. 工程科學學報, 2017, 39(7): 981-987. doi: 10.13374/j.issn2095-9389.2017.07.002
    引用本文: 伍云霞, 田一民. 基于最大池化稀疏編碼的煤巖識別方法[J]. 工程科學學報, 2017, 39(7): 981-987. doi: 10.13374/j.issn2095-9389.2017.07.002
    WU Yun-xia, TIAN Yi-min. A coal-rock recognition method based on max-pooling sparse coding[J]. Chinese Journal of Engineering, 2017, 39(7): 981-987. doi: 10.13374/j.issn2095-9389.2017.07.002
    Citation: WU Yun-xia, TIAN Yi-min. A coal-rock recognition method based on max-pooling sparse coding[J]. Chinese Journal of Engineering, 2017, 39(7): 981-987. doi: 10.13374/j.issn2095-9389.2017.07.002

    基于最大池化稀疏編碼的煤巖識別方法

    doi: 10.13374/j.issn2095-9389.2017.07.002
    基金項目: 

    國家自然科學基金重點資助項目(51134024)

    國家重點研發計劃資助項目(2016YFC0801800)

    詳細信息
    • 中圖分類號: TD672;TP391.41

    A coal-rock recognition method based on max-pooling sparse coding

    • 摘要: 針對現今煤巖圖像識別方法的缺乏與不足,為了挖掘新的煤巖圖像識別方法以及更好地處理高維煤巖圖像數據,提出了基于最大池化稀疏編碼的煤巖識別方法.本方法在提取煤巖圖像特征時加入了池化操作,在分類識別時采用了集成分類器,即多個弱分類器組成一個強分類器.實驗結果表明:最大池化稀疏編碼的特征提取方式能簡單有效表達煤巖圖像的紋理特征,大大增強煤巖圖像的可區分性,獲得較高的識別率,并且具有良好的識別穩定性.研究結果可為煤巖界面的自動識別提供新的思路和方法.

       

    • [7] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Comput, 2006, 18(7):1527
      [8] Larochelle H, Bengio Y, Louradour J, et al. Exploring strategies for training deep neural networks. J Machine Learning Res, 2009, 10(1):1
      [9] Chen W, Rodrigues M R D. Dictionary learning with optimized projection design for compressive sensing applications. IEEE Signal Process Lett, 2013, 20(10):992
      [10] Elad M, Aharon M. Image denoising via sparse and redundant representation over learned dictionaries. IEEE Trans Image Process, 2006, 15(12):3736
      [11] Zhou G H, Zhu D Z, Wang K, et al. Wavelet image inpainting based on dictionary learning with a beta process//World Automation Congress. Puerto Vallarta, 2012
      [12] Kukreja S L, Löfberg J, Brenner M J. A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification. IFAC Proc Volumes, 2006, 39(1):814
      [13] Yan Z B, Yao Y. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemom Intell Lab Syst, 2015, 146:136
      [14] Tropp J A. Greed is good:algorithmic results for sparse approximation. IEEE Trans Inf Theory, 2004, 50(10):2231
      [15] Li J, Wang Q, Shen Y. Near optimal condition of OMP algorithm in recovering sparse signal from noisy measurement. J Syst Eng Electron, 2014, 25(4):547
      [16] Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory, 2011, 57(7):4680
      [17] Aharon M, Elad M, Bruckstein A. rmK-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process, 2006, 54(11):4311
      [18] Ptucha R, Savakis A E. LGE-KSVD:robust sparse representation classification. IEEE Trans Image Process, 2014, 23(4):1737
      [19] Jiang Z L, Lin Z, Davis L S. Label consistent K-SVD:learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Machine Intell, 2013, 35(11):2651
      [20] Bryt O, Elad M. Compression of facial images using the K-SVD algorithm. J Visual Commun Image Representation, 2008, 19(4):270
      [22] Breiman L. Random forests. Machine Learning, 2001, 45(1):5
    • 加載中
    計量
    • 文章訪問數:  901
    • HTML全文瀏覽量:  265
    • PDF下載量:  16
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-01-01

    目錄

      /

      返回文章
      返回
      中文字幕在线观看