• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    夾雜物對超高強度鋼應力應變場的影響

    侯杰 董建新 姚志浩

    侯杰, 董建新, 姚志浩. 夾雜物對超高強度鋼應力應變場的影響[J]. 工程科學學報, 2017, 39(7): 1027-1035. doi: 10.13374/j.issn2095-9389.2017.07.007
    引用本文: 侯杰, 董建新, 姚志浩. 夾雜物對超高強度鋼應力應變場的影響[J]. 工程科學學報, 2017, 39(7): 1027-1035. doi: 10.13374/j.issn2095-9389.2017.07.007
    HOU Jie, DONG Jian-xin, YAO Zhi-hao. Influence of inclusion on stress and strain fields in ultra-high strength steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1027-1035. doi: 10.13374/j.issn2095-9389.2017.07.007
    Citation: HOU Jie, DONG Jian-xin, YAO Zhi-hao. Influence of inclusion on stress and strain fields in ultra-high strength steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1027-1035. doi: 10.13374/j.issn2095-9389.2017.07.007

    夾雜物對超高強度鋼應力應變場的影響

    doi: 10.13374/j.issn2095-9389.2017.07.007
    基金項目: 

    國家自然科學基金資助項目(51371023)

    詳細信息
    • 中圖分類號: TG146.1

    Influence of inclusion on stress and strain fields in ultra-high strength steel

    • 摘要: 非金屬夾雜物對鋼性能的影響與夾雜物的特征參數密切相關.首先分析拉伸和疲勞載荷下超高強度鋼中TiN夾雜物導致裂紋萌生的掃描電鏡原位觀察結果,采用MSC Marc有限元分析軟件對夾雜物及周圍基體的應力場進行計算,然后對拉伸載荷下不同特征參數的TiN夾雜物及周圍基體的應力應變場進行模擬.結果表明,有限元法能夠解釋并預測夾雜物及周圍基體的力學行為.三角形夾雜物尖角附近的應力集中最嚴重.矩形夾雜物內部高應力區的位置受夾雜物與外載荷方向夾角的影響.隨鄰近夾雜物間距的增大,基體內的最大應力由夾雜物外側移至夾雜物之間.近表面夾雜物使得基體自由表面附近出現高應力區,基體內最大應力的位置受夾雜物與自由表面距離和尺寸的影響.

       

    • [3] Chen X C, Shi C B, Guo H J, et al. Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process. Metall Mater Trans B, 2012, 43(6):1596
      [7] Texier D, Cormier J, Villechaise P, et al. Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime:the role of non-metallic inclusions. Mater Sci Eng A, 2016, 678:122
      [8] Krewerth D, Lippmann T, Weidner A, et al. Influence of nonmetallic inclusions on fatigue life in the very high cycle fatigue regime. Int J Fatigue, 2016, 84:40
      [9] Jiang J, Yang J, Zhang T T, et al. On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction. Acta Mater, 2015, 97:367
      [10] Zhang T T, Jiang J, Shollock B A, et al. Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy. Mater Sci Eng A, 2015, 641:328
      [11] Tan J B, Wu X Q, Han E H, et al. Role of TiN inclusion on corrosion fatigue behavior of alloy 690 steam generator tubes in borated and lithiated high temperature water. Corros Sci, 2014, 88:349
      [13] Paul S K. Numerical models to determine the effect of soft and hard inclusions on different plastic zones of a fatigue crack in a C(T) specimen. Eng Fract Mech, 2016, 159:90
      [14] Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in highstrength steels in the VHCF regime. Int J Fatigue, 2014, 64:114
      [16] Melander A. A finite element study of short cracks with different inclusion types under rolling contact fatigue load. Int J Fatigue, 1997, 19(1):13
      [17] Prasannavenkatesan R, Zhang J X, McDowell D L, et al. 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels. Int J Fatigue, 2009, 31(7):1176
      [18] Shamblen C E, Chang D R. Effect of inclusions on LCF life of HIP plus heat treated powder metal rené 95. Metall Trans B, 1985, 16(4):775
    • 加載中
    計量
    • 文章訪問數:  953
    • HTML全文瀏覽量:  283
    • PDF下載量:  40
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-10-04

    目錄

      /

      返回文章
      返回
      中文字幕在线观看