• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于小波包的開關電流電路故障診斷

    張鎮 段哲民 龍英

    張鎮, 段哲民, 龍英. 基于小波包的開關電流電路故障診斷[J]. 工程科學學報, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017
    引用本文: 張鎮, 段哲民, 龍英. 基于小波包的開關電流電路故障診斷[J]. 工程科學學報, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017
    ZHANG Zhen, DUAN Zhe-min, LONG Ying. Fault detection in switched current circuits based on preferred wavelet packet[J]. Chinese Journal of Engineering, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017
    Citation: ZHANG Zhen, DUAN Zhe-min, LONG Ying. Fault detection in switched current circuits based on preferred wavelet packet[J]. Chinese Journal of Engineering, 2017, 39(7): 1101-1106. doi: 10.13374/j.issn2095-9389.2017.07.017

    基于小波包的開關電流電路故障診斷

    doi: 10.13374/j.issn2095-9389.2017.07.017
    基金項目: 

    國家自然科學基金資助項目(61201108,61102035)

    詳細信息
    • 中圖分類號: TH165.3

    Fault detection in switched current circuits based on preferred wavelet packet

    • 摘要: 為提高開關電流電路故障診斷的精度,提出了一種基于小波包優選和優化BP神經網路的開關電流電路特征抽取與識別方法.首先對開關電流電路原始響應信號進行多層次的小波包分解,接著計算N層分解后的歸一化能量值,以特征偏離度作為評價選擇最優小波包基,構建最優故障特征向量,最后將提取的最優故障特征通過遺傳算法優化的BP神經網絡進行分類.該方法以實例電路進行驗證,結果表明所有的軟故障均得到了有效的分類,說明了該方法在開關電流電路故障診斷中的優越性.

       

    • [1] Toumazou C, Hughes J B, Battersby N C. Switched-Currents, an Analogue Technique for Digital Technology. London:Peter Peregrinus Ltd, 1993
      [3] Spence H. Automatic analog fault simulation//Proceedings of Auto Test Conference Test Technology and Commercialization. Dayton, 1996
      [4] Jantos P, Grzechca D, Rutkowski J. A global parametric faults diagnosis with the use of artificial neural networks//ECCTD 2009 European Conference on Circuit Theory and Design. Antalya, 2009:651
      [5] Tan Y H, Sun Y C, Yin X. Analog fault diagnosis using S-transform preprocessor and a QNN classifier. Measurement, 2013, 46(7):2174
      [6] Zhang A H, Chen C, Jiang B S. Analog circuit fault diagnosis based UCISVM. Neurocomputing, 2016, 173:1752
      [7] Aminian M, Aminian F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Trans Circuits Syst Ⅱ:Analog Digital Signal Process, 2000, 47(2):151
      [8] Aminian F, Aminian M, Collins H W. Analog fault diagnosis of actual circuits using neural networks. IEEE Trans Instrum Meas, 2002, 51(3):544
      [9] Peng M F, Tse C K, Shen M E, et al. Fault diagnosis of analog circuits using systematic tests based on data fusion. Circuits Syst Signal Process, 2013, 32(2):525
      [10] Sheikhan M, Sha'bani A A. PSO-optimized modular neural network trained by OWO-HWO algorithm for fault location in analog circuits. Neural Comput Appl, 2013, 23(2):519
      [11] Zhao D S, He Y Z. A new test points selection method for analog fault dictionary techniques. Analog Integr Circuits Signal Process, 2015, 82(2):435
      [12] Jiang Y Y, Wang Y R, Luo H. Fault diagnosis of analog circuit based on a second map SVDD. Analog Integr Circuits Signal Process, 2015, 85(3):395
      [13] Han H, Wang H J, Tian S L, et al. A new analog circuit fault diagnosis method based on improved Mahalanobis distance. J Electron Testing, 2013, 29(1):95
      [14] Guo J R, He Y G, Tang S X, et al. Switched-current circuits test using pseudo-random method. Analog Integr Circuits Signal Process, 2007, 52(1):47
      [15] Guo J R, Cai X H, He Y G. PRBS test signature analysis of switched current circuit//20091st International Conference on Information Science and Engineering (ICISE). Nanjing, 2009:627
      [16] Long Y, He Y G, Liu L, et al. Implicit functional testing of switched current filter based on fault signatures. Analog Integr Circuits Signal Process, 2012, 71(2):293
      [17] Guo J R, He Y G, Liu M R. Wavelet neural network approach for testing of switched-current circuits. J Electr Test, 2011, 27:611
      [18] Long Y, He Y G, Yuan L F. Fault dictionary based switched current circuit fault diagnosis using entropy as a preprocessor. Analog Integr Circuits Signal Process, 2011, 66(1):93
      [19] Zhang Z, Duan Z M, Long Y, et al. A new swarm-SVM-based fault diagnosis approach for switched current circuit by using kurtosis and entropy as a preprocessor. Analog Integr Circuits Signal Process, 2014, 81(1):289
    • 加載中
    計量
    • 文章訪問數:  536
    • HTML全文瀏覽量:  183
    • PDF下載量:  10
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2016-12-13

    目錄

      /

      返回文章
      返回
      中文字幕在线观看