• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    氧燭中錳金屬粒徑對氯酸鈉熱解的催化作用

    劉建國 金龍哲 高娜 汪澍 張浩

    劉建國, 金龍哲, 高娜, 汪澍, 張浩. 氧燭中錳金屬粒徑對氯酸鈉熱解的催化作用[J]. 工程科學學報, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
    引用本文: 劉建國, 金龍哲, 高娜, 汪澍, 張浩. 氧燭中錳金屬粒徑對氯酸鈉熱解的催化作用[J]. 工程科學學報, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
    LIU Jian-guo, JIN Long-zhe, GAO Na, WANG Shu, ZHANG Hao. Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators[J]. Chinese Journal of Engineering, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
    Citation: LIU Jian-guo, JIN Long-zhe, GAO Na, WANG Shu, ZHANG Hao. Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators[J]. Chinese Journal of Engineering, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004

    氧燭中錳金屬粒徑對氯酸鈉熱解的催化作用

    doi: 10.13374/j.issn2095-9389.2017.08.004
    基金項目: 

    國家自然科學基金資助項目(51504017)

    教育部博士點資助項目(20130006120020)

    中國博士后資助基金資助項目(2014T70039,2013M540866)

    中央高校基本科研業務經費資助項目(FRF-TP-15-043A3)

    詳細信息
    • 中圖分類號: X936

    Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators

    • 摘要: 分別制備了兩組粒徑的Mn金屬燃料(平均粒徑分別為18.73和5.24 μm),利用激光粒度分析儀測試了其粒徑分布,掃描電鏡分析了表面形貌,能譜儀確定了所含元素.對NaClO3,NaClO3與Co3O4,NaClO3、Co3O4與Mn的混合物分別進行了熱重與示差掃描量熱聯合分析實驗(TGA-DSC),通過對比各混合物熱解起始溫度及其他特征溫度,探究了Mn金屬粒徑對NaClO3熱解的催化強度與熱解穩定性的影響.研究結果表明:Co3O4雖對NaClO3熱解具有催化性,熱解開始溫度(To)由512.3℃下降為333.0℃,但其可導致NaClO3熱解的不穩定,熱解階梯由1個變為3個;Mn金屬燃料對NaClO3中間產物具有明顯的催化性,且隨著粒徑減小,催化強度逐漸增加,熱解終止溫度(Tf)由419.8℃下降為351.9℃,同時NaClO3熱解階梯減少,熱解溫度區間變窄(由180.6℃減小為19.4℃),熱解更加穩定.

       

    • [1] Jin L Z, Wang S, Liu S C, et al. Development of a low oxygen generation rate chemical oxygen generator for emergency refuge spaces in underground mines. Combust Sci Technol, 2015, 187(8):1229
      [2] Shafirovich E, Garcia A, Swamy A K N, et al. On feasibility of decreasing metal fuel content in chemical oxygen generators. Combust Flame, 2012, 159(1):420
      [4] Graf J, Dunlap C, Haas J, et al. Development of a solid chlorate backup oxygen delivery system for the international space station//International Conference on Envrionmental Systems (ICES). Toulouse, 2000
      [6] Littman J, Prince R N. Research on sodium chlorate candles for the storage and supply of oxygen for space exploration. NASA Special Publ, 1970, 234:291
      [9] Liu J G, Jin L Z, Gao N, et al. Effect of forming technology on oxygen supply performance of oxygen candles in refuge spaces//3rd International Symposium on Mine Safety Science and Engineering. Montreal, 2016:308
      [10] Wydeven T. Catalytic decomposition of sodium chlorate. J Catal, 1970, 19(2):162
      [12] Shafirovich E, Mukasyan A S, Varma A, et al. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel. Combust Flame, 2002, 128(1-2):133
      [13] Shafirovich E, Zhou C, Mukasyan A S, et al. Combustion fluctuations in low-exothermic condensed systems for emergency oxygen generation. Combust Flame, 2003, 135(4):557
      [14] Shafirovich E, Zhou C J, Ekambaram S, et al. Catalytic effects of metals on thermal decomposition of sodium chlorate for emergency oxygen generators. Ind Eng Chem Res, 2007, 46(10):3073
      [15] Machado M A, Rodriguez D A, Aly Y, et al. Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators. Combust Flame, 2014, 161(10):2708
      [16] Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of non-oxide metal compounds on the thermal decomposition of sodium chlorate. Ind Eng Chem Res, 1993, 32(11):2863
      [17] Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate. Thermochimical Acta, 1993, 228:147
      [18] Phuoc T X, Chen R H. Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles. Combust Flame, 2012, 159(1):416
      [19] Mohan S, Trunov M A, Dreizin E L. On possibility of vapor-phase combustion for fine aluminum particles. Combust Flame, 2009, 156(11):2213
      [20] Huang Y, Risha G A, Yang V, et al. Effect of particle size on combustion of aluminum particle dust in air. Combust Flame, 2009, 156(1):5
      [21] British Standards Institution. ISO 11358-1-2014 Plastics-Thermogravimetry (TG) of polymers-Part 1:General principles. Geneva, International Organization for Standardization, 2014
      [22] Markowitz M M, Boryta D A, Stewart Jr H. The differential thermal analysis of perchlorates. VI. Transient perchlorate formation during the pyrolysis of the alkali metal chlorates. J Phys Chem, 1964, 68(8):2282
      [23] Hu M, Chen Z H, Guo D B, et al. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol, 2015, 177:41
      [24] Ceylan S, Kazan D. Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp. Bioresour Technol, 2015, 187:1
      [25] Boon T H, Raheem A, Ghani W A W A K, et al. Thermogravimetric study of napier grass in inert and oxidative atmospheres conditions. J Phys Sci, 2017, 28(Suppl 1):155
      [26] Rudloff W K, Freeman E S. Catalytic effect of metal oxides on thermal-decomposition reactions. I. The mechanism of the molten-phase thermal decomposition of potassium chlorate and of potassium chlorate in mixtures with potassium chloride and potassium perchlorate. J Phys Chem, 1969, 73(5):1209
      [27] Zhang Y W, Yan K, Qiu K Z, et al. Catalyst for lithium perchlorate decomposition. J Propul Power, 2015, 31(5):1445
    • 加載中
    計量
    • 文章訪問數:  983
    • HTML全文瀏覽量:  347
    • PDF下載量:  29
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-03-09

    目錄

      /

      返回文章
      返回
      中文字幕在线观看