• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于GPR反射波信號多維分析的隧道病害智能辨識

    高永濤 徐俊 吳順川 呂建華 陳文

    高永濤, 徐俊, 吳順川, 呂建華, 陳文. 基于GPR反射波信號多維分析的隧道病害智能辨識[J]. 工程科學學報, 2018, 40(3): 293-301. doi: 10.13374/j.issn2095-9389.2018.03.005
    引用本文: 高永濤, 徐俊, 吳順川, 呂建華, 陳文. 基于GPR反射波信號多維分析的隧道病害智能辨識[J]. 工程科學學報, 2018, 40(3): 293-301. doi: 10.13374/j.issn2095-9389.2018.03.005
    AO Yong-tao, XU Jun, WU Shun-chuan, Lü Jian-hua, CHEN Wen. An intelligent identification method to detect tunnel defects based on the multidimensional analysis of GPR reflections[J]. Chinese Journal of Engineering, 2018, 40(3): 293-301. doi: 10.13374/j.issn2095-9389.2018.03.005
    Citation: AO Yong-tao, XU Jun, WU Shun-chuan, Lü Jian-hua, CHEN Wen. An intelligent identification method to detect tunnel defects based on the multidimensional analysis of GPR reflections[J]. Chinese Journal of Engineering, 2018, 40(3): 293-301. doi: 10.13374/j.issn2095-9389.2018.03.005

    基于GPR反射波信號多維分析的隧道病害智能辨識

    doi: 10.13374/j.issn2095-9389.2018.03.005
    詳細信息
    • 中圖分類號: U456.3

    An intelligent identification method to detect tunnel defects based on the multidimensional analysis of GPR reflections

    • 摘要: 隨著我國隧道工程建設的快速發展,由隧道病害引發的隧道質量和安全問題越發常見.通過地質雷達探測隧道病害對于減少隧道質量和安全問題具有十分重要的意義,為了提高病害探測的效率及可靠性,基于雷達反射波信號多維度分析,提出一種隧道病害智能辨識的新方法.根據反射波信號時域、頻域及時頻域分析結果提取病害信號辨識的6個典型特征,利用支持向量機算法對典型特征的訓練構建病害信號的二分類模型,實現了病害水平分布范圍的自動辨識;再依據病害信號的第一本征模態函數分量振幅包絡計算病害深度分布范圍,最終實現隧道病害的智能辨識.結合某隧道回填層雷達實測數據對智能辨識算法的性能進行評價,與人工辨識結果的對比表明,該智能算法對于病害的辨識能力較強,病害的識別率高達100%,但辨識結果中同時存在少量誤判,準確率達78.6%,滿足工程應用的需求.該算法可用于隧道工程各類地質雷達探測數據中病害的智能辨識,而對于其他領域的地質雷達探測數據,本文研究成果亦可為不同類型探測目標智能辨識算法的設計提供可行思路.

       

    • [4] Baryshnikov V D, Khmelin A P, Denisova E V. GPR detection of inhomogeneities in concrete lining of underground tunnels. J Min Sci, 2014, 50(1):25
      [8] Fadi A A. An Automated Framework for Defect Detection in Concrete Bridge Decks Using Fractals and Independent Component Analysis[Dissertation]. Michigan:Western Michigan University, 2010
      [9] Cui Y A, Wang L, Xiao J P. Automatic feature recognition for GPR image processing. Int J Comput Inf Eng, 2010, 4(1):14
      [11] Al-Nuaimy W, Huang Y, Nakhkash M, et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition. J Appl Geophys, 2000, 43(24):157
      [12] Maas C, Schmalzl J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar. Comput Geosci, 2013, 58:116
      [13] Laurence M, Raffaele P, Loredana M, et al. Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium. IEEE Trans Geosci Remote Sens, 2016, 54(1):580
      [15] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A, 1998, 454:903
    • 加載中
    計量
    • 文章訪問數:  868
    • HTML全文瀏覽量:  425
    • PDF下載量:  24
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-10-23

    目錄

      /

      返回文章
      返回
      中文字幕在线观看