• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展

    閆伯駿 邢奕 路培 蘇偉 姜博 崔曉旭

    閆伯駿, 邢奕, 路培, 蘇偉, 姜博, 崔曉旭. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展[J]. 工程科學學報, 2018, 40(7): 767-775. doi: 10.13374/j.issn2095-9389.2018.07.001
    引用本文: 閆伯駿, 邢奕, 路培, 蘇偉, 姜博, 崔曉旭. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展[J]. 工程科學學報, 2018, 40(7): 767-775. doi: 10.13374/j.issn2095-9389.2018.07.001
    YAN Bo-jun, XING Yi, LU Pei, SU Wei, JIANG Bo, CUI Xiao-xu. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry[J]. Chinese Journal of Engineering, 2018, 40(7): 767-775. doi: 10.13374/j.issn2095-9389.2018.07.001
    Citation: YAN Bo-jun, XING Yi, LU Pei, SU Wei, JIANG Bo, CUI Xiao-xu. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry[J]. Chinese Journal of Engineering, 2018, 40(7): 767-775. doi: 10.13374/j.issn2095-9389.2018.07.001

    鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展

    doi: 10.13374/j.issn2095-9389.2018.07.001
    基金項目: 

    國家自然科學基金資助項目(U1560110)

    中央高校基本科研業務費專項資助項目

    國家重點研發計劃資助項目(2017YFC0210300)

    詳細信息
    • 中圖分類號: X551

    A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry

    • 摘要: 基于我國鋼鐵行業燒結煙氣排放標準、排放特征和現行污染物控制技術,分析了國內外先進的多污染物協同控制技術——活性炭(焦)吸附工藝、濕法脫硫除塵+選擇性催化還原協同凈化技術、循環流化床多組分污染物協同凈化工藝、高性能燒結廢氣凈化工藝、新型密相半干法煙氣集成治理技術等工藝的技術思路、特點和存在問題等,并針對鋼鐵行業的實際需求對多污染物協同控制技術的發展提出了建議.

       

    • [2] Wang L C, Lee W J, Tsai P J, et al. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants.Chemosphere, 2003, 50(9):1123
      [3] Karademir A, Bakoglu M, Taspinar F, et al.Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator. Environ Sci Technol, 2004, 38(4):1201
      [4] Pan J, Zhu D Q, Cui Y, et al. Emission rule of SO2 in flue gas during sintering. J Central South Univ, 2011, 42(6):1495
      [7] Sun F, Gao J H, Liu X, et al.A systematic investigation of SO2 removal dynamics by coal-based activated cokes:the synergic enhancement effect of hierarchical pore configuration and gas components. Appl Surf Sci, 2015, 357:1895
      [8] Peng C, Zhang F L, Guo Z C. Gypsum crystallization and potassium chloride regeneration by reaction of calcium chloride solution with potassium sulfate solution or solid.Trans Nonferrous Met Soc China, 2010, 20(4):712
      [9] Peng C, Zhang F L, Cheng Z C. Separation and recovery of potassium chloride from sintering dust of iron making works. ISIJ Int, 2009, 49(5):735
      [10] Tian S D, Hou Y C, Wu W Z, et al. Reversible absorption of SO2 from simulated flue gas by aqueous calcium lactate solution. J Taiwan Inst Chem Eng, 2015, 54:71
      [13] Hamzehlouyan T, Sampara C S, Li J H, et al.Kinetic study of adsorption and desorption of SO2 over γ-Al2O3 and Pt/γ-Al2O3. Appl Catal B:Environ, 2016, 181:587
      [14] Liu Y X, Zhou J F, Wang Q, et al. A novel process for removal of Hg0 from flue gas using urea/persulfate activated by high temperature in a spray reactor. Chem Eng Res Des, 2015, 104:828
      [15] Yoosefian M, Zahedi M, Mola A, et al.A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube. Appl Surf Sci, 2015, 349:864
      [16] Ma Z R, Wu X D, Feng Y, et al.Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst. Prog Nat Sci:Mater Int, 2015, 25(4):342
      [18] Fu M F, Li C T, Lu P, et al. A review on selective catalytic reduction of NOx by supported catalysts at 100-300℃-catalysts, mechanism, kinetics. Catal Sci Technol, 2014, 4:14
      [19] Liang Z Y, Ma X Q, Lin H, et al. The energy consumption and environmental impacts of SCR technology in China. Appl Energy, 2011, 88(4):1120
      [20] Lu X N, Song C Y, Jia S H, et al.Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-grapheme. Chem Eng J, 2015, 260:776
      [21] Chen W S, Luo J, Qin L B, et al. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3. J Environ Manage, 2015, 164:146
      [22] Zhao Y, Hao R L, Qi M. Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0. Chem Eng J, 2015, 269:159
      [23] Ficarella A, Laforgia D. Numerical simulation of flow-field and dioxins chemistry for incineration plants and experimental investigation.Waste Manage, 2000, 20(1):27
      [25] Wang X, Li Y J, Zhu T Y, et al.Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model. Chem Eng J, 2015, 264:479
      [29] Kong M, Liu Q C, Wang X Q, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst. Catal Commun, 2015, 72:121
      [30] Kwon D W, Park K H, Hong S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chem Eng J, 2016, 284:315
      [31] Zhao Y, Hao R L, Yuan B, et al. Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant. J Hazard Mater, 2016, 301:74
    • 加載中
    計量
    • 文章訪問數:  2291
    • HTML全文瀏覽量:  750
    • PDF下載量:  101
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-07-04

    目錄

      /

      返回文章
      返回
      中文字幕在线观看