• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    細粒層對浸礦表面形貌及鈍化的影響

    尹升華 王雷鳴 潘晨陽 陳勛

    尹升華, 王雷鳴, 潘晨陽, 陳勛. 細粒層對浸礦表面形貌及鈍化的影響[J]. 工程科學學報, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003
    引用本文: 尹升華, 王雷鳴, 潘晨陽, 陳勛. 細粒層對浸礦表面形貌及鈍化的影響[J]. 工程科學學報, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003
    YIN Sheng-hua, WANG Lei-ming, PAN Chen-yang, CHEN Xun. Effect of fine interlayers on surface morphology and passivation during leaching[J]. Chinese Journal of Engineering, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003
    Citation: YIN Sheng-hua, WANG Lei-ming, PAN Chen-yang, CHEN Xun. Effect of fine interlayers on surface morphology and passivation during leaching[J]. Chinese Journal of Engineering, 2018, 40(8): 910-917. doi: 10.13374/j.issn2095-9389.2018.08.003

    細粒層對浸礦表面形貌及鈍化的影響

    doi: 10.13374/j.issn2095-9389.2018.08.003
    基金項目: 

    國家優秀青年科學基金資助項目(51722401);國家自然科學基金重點資助項目(51734001)

    詳細信息
    • 中圖分類號: TD862

    Effect of fine interlayers on surface morphology and passivation during leaching

    • 摘要: 由于礦石粒徑配比、表面粗糙度、密度等性質差異,筑堆過程中堆內極易出現礦石顆粒偏析現象.細粒層是導致礦石表面受侵蝕程度不均的關鍵因素,其嚴重制約了銅礦資源的高效浸取.為探究細粒層對礦石浸出效果、表面形貌及鈍化現象的影響,選取粗顆粒礦石(4 mm < d < 6 mm)與細顆粒礦石(2 mm < d < 4 mm),開展不同細粒層位置下次生硫化銅礦微生物浸出實驗.結合CT掃描與冷場電鏡掃描技術等分析手段,從宏、細、微觀多層面,探究不同細粒層位置下礦石宏觀浸出規律,細觀礦石團聚結塊,微觀表面形貌特征與鈍化.結果表明:細粒層導致銅浸出率普遍降低,均低于無細粒層、均勻粗顆粒介質的實驗組;不同礦堆位置處細粒層對浸出效果影響不同,細粒層位于頂部的實驗組銅浸出效果最優,浸礦60 d銅浸出率達71.3%;同一細粒層不同位置處礦石表面孔裂結構演化程度不一;浸礦60 d后,銅浸出率趨于峰值,礦石團聚結塊與鈍化現象顯著,礦石表面形成以黃鉀鐵礬、多硫化物、胞外多聚物、硫膜為主的鈍化物質層.

       

    • [1] Yin S H, Wang L M, Kabwe E, et al. Copper bioleaching in China:review and prospect. Miner, 2018, 8(2):32
      [2] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores——a brief overview. Hydrometallurgy, 2015, 165:206
      [3] Yang S R, Xie J Y, Qiu G Z, et al. Research and application of bioleaching and biooxidation technologies in China. Miner Eng, 2002, 15(5):361
      [4] Webb G, Tyler S W, Collord J, et al. Field-scale analysis of flow mechanisms in highly heterogeneous mining media. Vadose Zone J, 2008, 7(3):899
      [5] Wu A X, Yin S H, Yang B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4):124
      [6] Warren G W. Hydrometallurgy——a review and preview. JOM, 1984, 36(4):61.
      [7] Yen Y K, Lin C L, Miller J D. Particle overlap and segregation problems in on-line coarse particle size measurement. Powder Technol, 1998, 98(1):1
      [8] Lin C L, Miller J D. Development of a PC, image-based, on-line particle-size analyzer. Miner Metall Process, 1993, 10(1):29
      [9] Poisson J, Chouteau M, Aubertin M, et al. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J Appl Geophys, 2009, 67(2):179
      [14] Sheikhzadeh G A, Mehrabian M A, Mansouri S H, et al. Computational modelling of unsaturated flow of liquid in heap leaching——using the results of column tests to calibrate the model. Int J Heat Mass Transfer, 2005, 48(2):279
      [16] Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity on capillary process inside leaching heap. Trans Nonferrous Met Soc China, 2016, 26(3):835
      [17] Erguler G K, Erguler Z A, Akcakoca H, et al. The effect of column dimensions and particle size on the results of kinetic column test used for acid mine drainage (AMD) prediction. Miner Eng, 2014, 55:18
      [19] Wu A X, Yin S H, Qin W Q, et al. The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching. Hydrometallurgy, 2009, 95(1-2):76
      [24] Cariaga E, Concha F, Sepúlveda M. Flow through porous media with applications to heap leaching of copper ores. Chem Eng J, 2005, 111(2-3):151
      [25] Agate A D, Korczynski M S, Lundgren D G. Extracellular complex from the culture filtrate of Ferrobacillus ferrooxidans. Can J Microbiol, 1969, 15(3):259
      [26] Zhao X Q, Wang R C, Lu X C, et al. Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans. Miner Eng, 2013, 53:184
      [27] Panda S, Parhi P K, Nayak B D, et al. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer. Bioresour Technol, 2013, 130:332
    • 加載中
    計量
    • 文章訪問數:  971
    • HTML全文瀏覽量:  432
    • PDF下載量:  14
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-08-30

    目錄

      /

      返回文章
      返回
      中文字幕在线观看