• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    聯合多種邊緣檢測算子的無參考質量評價算法

    沈麗麗 杭寧

    沈麗麗, 杭寧. 聯合多種邊緣檢測算子的無參考質量評價算法[J]. 工程科學學報, 2018, 40(8): 996-1004. doi: 10.13374/j.issn2095-9389.2018.08.014
    引用本文: 沈麗麗, 杭寧. 聯合多種邊緣檢測算子的無參考質量評價算法[J]. 工程科學學報, 2018, 40(8): 996-1004. doi: 10.13374/j.issn2095-9389.2018.08.014
    SHEN Li-li, HANG Ning. No-reference image quality assessment using joint multiple edge detection[J]. Chinese Journal of Engineering, 2018, 40(8): 996-1004. doi: 10.13374/j.issn2095-9389.2018.08.014
    Citation: SHEN Li-li, HANG Ning. No-reference image quality assessment using joint multiple edge detection[J]. Chinese Journal of Engineering, 2018, 40(8): 996-1004. doi: 10.13374/j.issn2095-9389.2018.08.014

    聯合多種邊緣檢測算子的無參考質量評價算法

    doi: 10.13374/j.issn2095-9389.2018.08.014
    基金項目: 

    國家自然科學基金資助項目(61520106002,61471262)

    詳細信息
    • 中圖分類號: TN911.73

    No-reference image quality assessment using joint multiple edge detection

    • 摘要: 提出了一種聯合多種邊緣檢測算子的無參考質量評價算法,同時考慮一階和二階邊緣算子,避免了單一算子的局限性.該方法首先將彩色圖像轉換為灰度圖像,然后計算灰度圖像的梯度,相對梯度以及LOG特征.本文所使用的特征分為兩部分,一部分提取相對梯度方向的標準差,另一部分利用條件熵來量化不同特征之間的相似性和相互關系,并且考慮到人眼特性進行多尺度計算,最后使用自適應增強(AdaBoost)神經網絡進行訓練和預測.在公共數據庫LIVE和TID2008上進行實驗,結果表明新方法對失真圖像的預測評分與主觀評分有較高的一致性,能很好地反映圖像質量的視覺感知效果,僅使用10維特征,性能優于現有的主流無參考質量評價算法.

       

    • [1] Wang S Q, Gu K, Zhang X, et al. Subjective and objective quality assessment of compressed screen content images. IEEE J Emerging Sel Top Circuits Syst, 2016, 6(4):532
      [2] Zhang X F, Wang S Q, Gu K, et al. Just-noticeable difference-based perceptual optimization for JPEG compression. IEEE Signal Process Lett, 2017, 24(1):96
      [3] Li L D, Yan Y, Lu Z L, et al. No-reference quality assessment of deblurred images based on natural scene statistics. IEEE Access, 2017, 5:2163
      [4] Gu K, Zhai G T, Wang S Q, et al. A general histogram modification framework for efficient contrast enhancement//IEEE International Symposium on Circuits and Systems. Lisbon, 2015:2816
      [5] Ruderman D L. The statistics of natural images. Network Comput Neural Syst, 1994, 5(4):517
      [6] Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain. IEEE Trans Image Process, 2012, 21(8):3339
      [7] Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality. IEEE Trans Image Process, 2011, 20(12):3350
      [8] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process, 2012, 21(12):4695
      [9] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol, 1962, 160(1):106
      [10] Clark M, Bovik A C. Experiments in segmenting texton patterns using localized spatial filters. Pattern Recognit, 1989, 22(6):707
      [11] Marziliano P, Dufaux F, Winkler S, et al. A no-reference perceptual blur metric//IEEE International Conference on Image Processing (ICIP). Rochester, 2002:Ⅲ-57
      [12] Marziliano P, Dufaux F, Winkler S, et al. Perceptual blur and ringing metrics:application to JPEG2000. Signal Process:Image Commun, 2004, 19(2):163
      [13] Liu L X, Hua Y, Zhao Q J, et al. Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Process:Image Commun, 2016, 40:1
      [14] Zhang M, Muramatsu C, Zhou X R, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett, 2014, 22(2):207
      [15] Li Q H, Lin W S, Fang Y M. No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process Lett, 2016, 23(4):541
      [16] Yue G H, Hou C P, Gu K, et al. No reference image blurriness assessment with local binary patterns. J Visual Commun Image Representation, 2017, 49:382
      [18] Ponomarenko N, Lukin V, Zelensky A, et al. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectron, 2009, 10(4):30
      [19] Ghosh K, Sarkar S, Bhaumik K. Understanding image structure from a new multi-scale representation of higher order derivative filters. Image Vision Comput, 2007, 25(8):1228
      [20] Gu K, Li L D, Lu H, et al. A fast reliable image quality predictor by fusing micro- and macro-structures. IEEE Trans Ind Electron, 2017, 64(5):3903
      [21] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity. IEEE Trans Image Process, 2004, 13(4):600
      [22] Ye P, Kumar J, Kang L, et al. Unsupervised feature learning framework for no-reference image quality assessment//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, 2012:1098
      [23] Zhang M, Muramatsu C, Zhou X R, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett, 2014, 22(2):207
      [24] Gu K, Zhai G T, Yang X K, et al. Using free energy principle for blind image quality assessment. IEEE Trans Multimedia, 2015, 17(1):50
    • 加載中
    計量
    • 文章訪問數:  656
    • HTML全文瀏覽量:  277
    • PDF下載量:  10
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-08-22

    目錄

      /

      返回文章
      返回
      中文字幕在线观看