• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鉛離子對苯乙烯膦酸浮選錫石的活化作用

    李艷軍 劉暢 劉杰 宮貴臣

    李艷軍, 劉暢, 劉杰, 宮貴臣. 鉛離子對苯乙烯膦酸浮選錫石的活化作用[J]. 工程科學學報, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003
    引用本文: 李艷軍, 劉暢, 劉杰, 宮貴臣. 鉛離子對苯乙烯膦酸浮選錫石的活化作用[J]. 工程科學學報, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003
    LI Yan-jun, LIU Chang, LIU Jie, GONG Gui-chen. Activation effect of Pb2+ in cassiterite flotation with styrene phosphonic acid as collector[J]. Chinese Journal of Engineering, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003
    Citation: LI Yan-jun, LIU Chang, LIU Jie, GONG Gui-chen. Activation effect of Pb2+ in cassiterite flotation with styrene phosphonic acid as collector[J]. Chinese Journal of Engineering, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003

    鉛離子對苯乙烯膦酸浮選錫石的活化作用

    doi: 10.13374/j.issn2095-9389.2018.09.04.003
    基金項目: 

    國家自然科學基金資助項目 51674066

    詳細信息
      通訊作者:

      劉暢, E-mail: reliuchang@163.com

    • 中圖分類號: TD952

    Activation effect of Pb2+ in cassiterite flotation with styrene phosphonic acid as collector

    More Information
    • 摘要: 通過單礦物浮選試驗揭示了Pb2+對苯乙烯膦酸(SPA)浮選錫石效果的影響規律,在此基礎上,利用接觸角測定、Zeta電位檢測、紅外光譜分析和浮選溶液化學研究了苯乙烯膦酸浮選錫石體系中Pb2+的活化作用機理.單礦物試驗結果表明:在礦漿pH為2.0~8.0的區間內Pb2+對錫石的浮選具有明顯的活化作用,礦漿pH為4.0時錫石的回收率最高,達到93.78%,與不存在Pb2+的情況相比提高了5.33%.Zeta電位檢測、紅外光譜分析和浮選溶液化學結果表明:苯乙烯膦酸主要化學吸附于錫石表面,使錫石表面的Zeta電位負移,Pb2+的作用促進了苯乙烯膦酸的吸附,進一步降低了錫石表面的Zeta電位;Pb2+可以與錫石表面的Sn4+發生置換,PbOH+能夠與錫石表面的Sn-OH發生相互作用形成以Sn-O-Pb+形式存在的絡合物,這些作用增加了錫石表面的活性位點數量,使得苯乙烯膦酸在錫石表面的吸附量增多,導致了錫石的活化.

       

    • 圖  1  錫石試樣X射線衍射分析圖譜

      Figure  1.  XRD analysis of cassiterite

      圖  2  苯乙烯膦酸用量和礦漿pH值對錫石回收率的影響

      Figure  2.  Influence of SPA dosage and pulp pH values on cassiterite recovery

      圖  3  不同礦漿pH值下Pb2+對錫石回收率的影響

      Figure  3.  Influence of Pb2+ on cassiterite recovery at different pulp pH values

      圖  4  Pb2+和苯乙烯膦酸對錫石Zeta電位的影響

      Figure  4.  Influence of Pb2+ and SPA on the zeta-potential of cassiterite

      圖  5  錫石和Pb2+水解組分的濃度對數圖.(a)錫石溶解組分;(b)Pb2+水解組分(Pb2+濃度為3×10-4 mol ·L-1)

      Figure  5.  Concentration logarithmic diagram of cassiterite and Pb2+ hydrolyzation components: (a) cassiterite hydrolyzation; (b) Pb2+ hydrolyzation

      圖  6  苯乙烯膦酸的紅外光譜

      Figure  6.  Infrared spectra of SPA

      圖  7  錫石與藥劑作用前后的紅外光譜.(a)錫石;(b)與苯乙烯膦酸作用后的錫石;(c)與Pb2+和苯乙烯膦酸作用后的錫石

      Figure  7.  Infrared spectra of cassiterite before and after treated with Pb2+ and SPA: (a) cassiterite; (b) cassiterite treated with SPA; (c) cassiterite treated with Pb2+ and SPA

      表  1  錫石試樣化學成分分析結果(質量分數)

      Table  1.   Chemical composition of cassiterite sample?%

      SnO2 Na CaO MgO K2O Al2O3 SiO2
      96.31 < 0.01 < 0.01 0.25 < 0.01 1.49 0.086
      下載: 導出CSV

      表  2  試驗所用藥劑

      Table  2.   List of reagents used in experiments

      藥劑名稱 分子式 純度 生產廠家
      苯乙烯膦酸 C8H9O3P 分析純 北京礦冶研究總院
      硝酸鉛 Pb(NO3)2 分析純 國藥集團化學試劑有限公司
      鹽酸 HCl 分析純 北京化學試劑公司
      氫氧化鈉 NaOH 分析純 北京市紅星化工廠
      下載: 導出CSV

      表  3  不同藥劑作用后錫石表面接觸角的變化

      Table  3.   Changes of cassiterite surface contact angle in the presence of different reagents

      藥劑名稱 接觸角,θ/(°) cosθ 1-cosθ
      33 0.84 0.16
      苯乙烯膦酸 124 -0.56 1.56
      Pb2++苯乙烯膦酸 133 -0.68 1.68
      下載: 導出CSV
      中文字幕在线观看
    • [1] Angadi S I, Sreenivas T, Jeon H S, et al. A review of cassiterite beneficiation fundamentals and plant practices. Miner Eng, 2015, 70: 178 doi: 10.1016/j.mineng.2014.09.009
      [2] Tian M J, Liu R Q, Gao Z Y, et al. Activation mechanism of Fe (Ⅲ) ions in cassiterite flotation with benzohydroxamic acid collector. Miner Eng, 2018, 119: 31 doi: 10.1016/j.mineng.2018.01.011
      [3] Feng Q C, Wen S M, Zhao W J, et al. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation. Sep Purif Technol, 2018, 206: 239 doi: 10.1016/j.seppur.2018.06.005
      [4] Leistner T, Embrechts M, Leiβner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020
      [5] Zhou Y C, Tong X, Song S X, et al. Beneficiation of cassiterite fines from a tin tailing slime by froth flotation. Sep Sci Technol, 2014, 49(3): 458 doi: 10.1080/01496395.2013.818036
      [6] Tian M J, Gao Z Y, Sun W, et al. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: new perspective and new practice. J Colloid Interface Sci, 2018, 529: 150 doi: 10.1016/j.jcis.2018.05.113
      [7] Yang Z R, Bian X, Wu W Y. Flotation performance and adsorption mechanism of styrene phosphonic acid as a collector to synthetic(Ce, La)2O3. J Rare Earths, 2017, 35(6): 621 doi: 10.1016/S1002-0721(17)60955-4
      [8] Wang X, Tong X, Zhou Y C. Process mineralogy and ore-dressing process of cassiterite. Min Metall, 2011, 20(4): 15 doi: 10.3969/j.issn.1005-7854.2011.04.004

      王曉, 童雄, 周永誠. 錫石工藝礦物學與選礦工藝. 礦冶, 2011, 20(4): 15 doi: 10.3969/j.issn.1005-7854.2011.04.004
      [9] Wang P P, Qin W Q, Ren L Y, et al. Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite. Trans Nonferrous Met Soc China, 2013, 23(6): 1789 doi: 10.1016/S1003-6326(13)62662-X
      [10] Kuys K J, Roberts N K. In situ investigation of the adsorption of styrene phosphonic acid on cassiterite by FTIR-ATR spectroscopy. Colloids Surf, 1987, 24(1): 1 doi: 10.1016/0166-6622(87)80257-3
      [11] Feng Q C, Zhao W J, Wen S M, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Sep Purif Technol, 2017, 178: 193 doi: 10.1016/j.seppur.2017.01.053
      [12] Gong G C, Liu J, Han Y X. Effect of metal ions on floatation behaviors of fine cassiterite. Multi Utiliz Miner Resources, 2016(4): 43 doi: 10.3969/j.issn.1000-6532.2016.04.010

      宮貴臣, 劉杰, 韓躍新. 金屬離子對微細粒錫石浮選行為的影響. 礦產綜合利用, 2016(4): 43 doi: 10.3969/j.issn.1000-6532.2016.04.010
      [13] Tan X, He F Y, Shang Y B, et al. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Trans Nonferrous Met Soc China, 2016, 26(9): 2469 doi: 10.1016/S1003-6326(16)64368-6
      [14] Chen Y. Experimental Study on Flotation of Dulong Fine-Grained Cassiterite[Dissertation]. Kunming: Kunming University of Science and Technology, 2017

      陳瑜. 都龍微細粒級錫石浮選試驗研究[學位論文]. 昆明: 昆明理工大學, 2017
      [15] Li F X, Zhong H, Zhao G, et al. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite. Appl Surf Sci, 2015, 353: 856
      [16] Gong G C, Han Y X, Liu J, et al. In situ investigation of the adsorption of styrene phosphonic acid on cassiterite (110) surface by molecular modeling. Minerals, 2017, 7(10): 181 doi: 10.3390/min7100181
      [17] Tian M J, Zhang C Y, Han H S, et al. Novel insights into adsorption mechanism of benzohydroxamic acid on lead (Ⅱ)-activated cassiterite surface: An integrated experimental and computational study. Miner Eng, 2018, 122: 327 doi: 10.1016/j.mineng.2018.04.012
    • 加載中
    圖(7) / 表(3)
    計量
    • 文章訪問數:  781
    • HTML全文瀏覽量:  349
    • PDF下載量:  21
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-09-04
    • 刊出日期:  2019-10-01

    目錄

      /

      返回文章
      返回