• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于光電容積脈搏波的有限空間生理疲勞測量

    于露 金龍哲 徐明偉 謝曉雅 田興華

    于露, 金龍哲, 徐明偉, 謝曉雅, 田興華. 基于光電容積脈搏波的有限空間生理疲勞測量[J]. 工程科學學報, 2018, 40(10): 1215-1222. doi: 10.13374/j.issn2095-9389.2018.10.008
    引用本文: 于露, 金龍哲, 徐明偉, 謝曉雅, 田興華. 基于光電容積脈搏波的有限空間生理疲勞測量[J]. 工程科學學報, 2018, 40(10): 1215-1222. doi: 10.13374/j.issn2095-9389.2018.10.008
    YU Lu, JIN Long-zhe, XU Ming-wei, XIE Xiao-ya, TIAN Xing-hua. Confined space physiological fatigue measurement based on photoplethysmography pulse wave signal[J]. Chinese Journal of Engineering, 2018, 40(10): 1215-1222. doi: 10.13374/j.issn2095-9389.2018.10.008
    Citation: YU Lu, JIN Long-zhe, XU Ming-wei, XIE Xiao-ya, TIAN Xing-hua. Confined space physiological fatigue measurement based on photoplethysmography pulse wave signal[J]. Chinese Journal of Engineering, 2018, 40(10): 1215-1222. doi: 10.13374/j.issn2095-9389.2018.10.008

    基于光電容積脈搏波的有限空間生理疲勞測量

    doi: 10.13374/j.issn2095-9389.2018.10.008
    基金項目: 

    國家"十三五"重點科技資助項目(2016YFC080176)

    詳細信息
    • 中圖分類號: X914

    Confined space physiological fatigue measurement based on photoplethysmography pulse wave signal

    • 摘要: 通過有限空間100 min極限載人實驗,提出了基于光電容積脈搏波(PPG)的客觀疲勞測量方法并開發了光電容積脈搏波信號特征參數提取算法用來掌握生理疲勞的血液動力學與循環系統變化特征.研究結果表明,人體出現生理疲勞時,光電容積脈搏波信號平均周期顯著大于未疲勞狀態(p<0.001),血管阻力增大,每搏射血量明顯下降;計算了未疲勞與疲勞狀態下光電容積脈搏波信號的兩種復雜度(KC復雜度和高階KC復雜度)發現,兩種復雜度計算結果一致,均為未疲勞時波形比疲勞時波形更平穩.因此表明光電容積脈搏波信號能夠捕捉到疲勞狀態的生理變化,解決了生理疲勞的客觀測量與快速判斷問題.

       

    • [1] Giltvedt J, Sira A, Helme P. Pulsd multifrequency photoplethysmogroph. Med Biol Eng Comput, 1984, 22(3):212
      [2] Avolio A P, Butlin M, Walsh A. Arterial blood pressure measurement and pulse wave analysis-their role in enhancing cardiovascular assessment. Physiol Meas, 2010, 31(1):R1
      [3] Gil E, Orini M, Bailon R, et al. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas, 2010, 31(9):127
      [4] Hou L X, Wei M, Wang X, et al. A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse. J Zhejiang Univ Sci A, 2011, 12(6):438
      [5] Reisner A, Shaltis P A, McCombie D, et al. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology, 2008, 108(5):950
      [6] Huiku M, Uutela K, Van Gils M, et al. Assessment of surgical stress during general anaesthesia. Br J Anaesth, 2007, 98(4):447
      [9] Bruck L. Confined space safety and rescue:challenges and lessons learned. Occup Hazards, 2012, 70(4):29
      [11] Hancock P A, Vasmatzidis I. Human occupational and performance limits under stress:the thermal environment as a prototypical example. Ergonomics, 1998, 41(8):1169
      [13] Galtsev A P, Grechko E I, Dzhola A V, et al. Spectroscopic measurements of atmospheric gas content:latitudinal distributions, seasonal variations, and long-period trends//Proc SPIE 2017 CIS Selected Papers:Optical Monitoring of the Environment. Moscow, 1993:104
      [14] Verges S, Bachasson D, Wuyam B. Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir Res, 2010, 11(1):109
      [15] Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, 2007, 28(3):R1
      [16] Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors-past and present. Electronics, 2014, 3(2):282
      [17] Ram M R, Madhav K V, Krishna E H, et al. A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter. IEEE Trans Instrum Meas, 2012, 61(5):1445
      [18] De Wilde R B P, Schreuder J J, Van Den Berg P C M, et al. An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia, 2007, 62(8):760
      [21] Westerbof N, Lankhaar J W, Westerhof B E. The arterial windkessel. Med Biol Eng Comput, 2009, 47(2):131
      [22] Erem B, Orellana R M, Hyde D E, et al. Extensions to a manifold learning framework for time-series analysis on dynamic manifolds in bioelectric signals. Phys Rev E, 2016, 93(4):042218
    • 加載中
    計量
    • 文章訪問數:  875
    • HTML全文瀏覽量:  306
    • PDF下載量:  14
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-03-20

    目錄

      /

      返回文章
      返回
      中文字幕在线观看