• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響

    張超 郭輝 王家星 張冰 趙愛民

    張超, 郭輝, 王家星, 張冰, 趙愛民. 等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響[J]. 工程科學學報, 2018, 40(12): 1502-1509. doi: 10.13374/j.issn2095-9389.2018.12.008
    引用本文: 張超, 郭輝, 王家星, 張冰, 趙愛民. 等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響[J]. 工程科學學報, 2018, 40(12): 1502-1509. doi: 10.13374/j.issn2095-9389.2018.12.008
    ZHANG Chao, GUO Hui, WANG Jia-xing, ZHANG Bing, ZHAO Ai-min. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel[J]. Chinese Journal of Engineering, 2018, 40(12): 1502-1509. doi: 10.13374/j.issn2095-9389.2018.12.008
    Citation: ZHANG Chao, GUO Hui, WANG Jia-xing, ZHANG Bing, ZHAO Ai-min. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel[J]. Chinese Journal of Engineering, 2018, 40(12): 1502-1509. doi: 10.13374/j.issn2095-9389.2018.12.008

    等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響

    doi: 10.13374/j.issn2095-9389.2018.12.008
    基金項目: 

    國家自然科學基金資助項目(U1560107)

    詳細信息
    • 中圖分類號: TG142.71

    Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel

    • 摘要: 設計了一種0.7C的低合金超細貝氏體鋼,并通過膨脹儀、二體磨損實驗、光學顯微鏡、掃描電鏡、X射線衍射、激光掃描共聚焦顯微鏡及能譜儀,研究了不同等溫淬火溫度對超細貝氏體鋼的貝氏體相變動力學、微觀組織以及干滑動摩擦耐磨性的影響,揭示超細貝氏體鋼在二體磨損條件下的耐磨性能和磨損機理.研究結果表明,不同等溫溫度下的超細貝氏體鋼都由片層狀貝氏體鐵素體和薄膜狀以及塊狀的殘留奧氏體組成;隨著等溫溫度的升高,超細貝氏體的相變速率提高,相變孕育期及相變完成時間縮短,但貝氏體鐵素體板條厚度增加,殘留奧氏體含量增加,硬度值有所降低;超細貝氏體鋼磨損面形貌以平直的犁溝為主,主要的磨損機理為顯微切削;不同等溫溫度下所獲得的超細貝氏體的耐磨性能都優于回火馬氏體,且隨著等溫溫度的降低,耐磨性能提高.其中在250℃等溫所獲得的超細貝氏體鋼具有最優的耐磨性能,其相對耐磨性為回火馬氏體的1.28倍.這主要與超細貝氏體鋼中貝氏體鐵素體板條的細化及磨損過程中殘留奧氏體的形變誘導馬氏體相變(TRIP)效應有關.

       

    • [1] Caballero F G, Bhadeshia H, Mawella K J A, et al. Very strong low temperature bainite. Mater Sci Technol, 2002, 18(3):279
      [2] Bhadeshia H K D H. Nanostructured bainite//Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences. London, 2009:1
      [3] Al-Hamdany A. Mechanical Property Modelling of Steels[Dissertation]. Bhagdad:University of Technology Bhagdad, 2010
      [4] Yoozbashi M N, Yazdani S, Wang T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production. Mater Des, 2011, 32(6):3248
      [5] Yang J, Wang T S, Zhang B, et al. Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel. Wear, 2012, 282-283:81
      [6] Zhang P, Zhang F C, Yan Z G, et al. Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel. Wear, 2011, 271(5-6):697
      [7] Wang T S, Yang J, Shang C J, et al. Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment. Surf Coat Technol, 2008, 202(16):4036
      [8] Rementeria R, García I, Aranda M M, et al. Reciprocating-sliding wear behavior of nanostructured and ultra-fine high-silicon bainitic steels. Wear, 2015, 338-339:202
      [9] Zhang F C, Long X Y, Kang J, et al. Cyclic deformation behaviors of a high strength carbide-free bainitic steel. Mater Des, 2016, 94:1
      [10] Sourmail T, Caballero F G, Garcia-Mateo C, et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Mater Sci Technol, 2013, 29(10):1166
      [11] Bakshi S D, Leiro A, Prakash B, et al. Dry rolling/sliding wear of nanostructured bainite. Wear, 2014, 316(1-2):70
      [12] Leiro A, Vuorinen E, Sundin K G, et al. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions. Wear, 2013, 298-299:42
      [13] Leiro A, Kankanala A, Vuorinen E, et al. Tribological behaviour of carbide-free bainitic steel under dry rolling/sliding conditions. Wear, 2011, 273(1):2
      [14] Solano-Alvarez W, Pickering E J, Bhadeshia H K D H. Degradation of nanostructured bainitic steel under rolling contact fatigue. Mater Sci Eng A, 2014, 617:156
      [15] Bakshi S D, Shipway P H, Bhadeshia H K D H. Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite. Wear, 2013, 308(1-2):46
      [16] Beladi H, Timokhina I B, Hodgson P D, et al. Characterization of nano-structured bainitic steel. Int J Mod Phys, 2012, 5:1
      [17] De A K, Murdock D C, Mataya M C, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Mater, 2004, 50(12):1445
      [18] Yoozbashi M N, Yazdani S. Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model. Mater Sci Eng A, 2010, 527(13-14):3200
      [19] Guo H, Zhou P, Zhao A M, et al. Effects of Mn and Cr contents on microstructures and mechanical properties of low temperature bainitic steel. J Iron Steel Res Int, 2017, 24(3):290
      [20] Zhao J, Wang T S, Lü B, et al. Microstructures and mechanical properties of a modified high-C-Cr bearing steel with nano-scaled bainite. Mater Sci Eng A, 2015, 628:327
      [21] Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite. Metall Mater Trans A, 2005, 36(12):3281
      [22] Chang L C, Bhadeshia H K D H. Austenite films in bainitic microstructures. Mater Sci Technol, 1995, 11(9):874
      [23] Morales-Rivas L, González-Orive A, Garcia-Mateo C, et al. Nanomechanical characterization of nanostructured bainitic steel:peak force microscopy and nanoindentation with AFM. Sci Rep, 2015, 5:17164
    • 加載中
    計量
    • 文章訪問數:  857
    • HTML全文瀏覽量:  283
    • PDF下載量:  38
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-12-05

    目錄

      /

      返回文章
      返回
      中文字幕在线观看