• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于集成案例推理方法的RH精煉鋼水終點溫度預測

    馮凱 徐安軍 賀東風 汪紅兵

    馮凱, 徐安軍, 賀東風, 汪紅兵. 基于集成案例推理方法的RH精煉鋼水終點溫度預測[J]. 工程科學學報, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023
    引用本文: 馮凱, 徐安軍, 賀東風, 汪紅兵. 基于集成案例推理方法的RH精煉鋼水終點溫度預測[J]. 工程科學學報, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023
    FENG Kai, XU An-jun, HE Dong-feng, WANG Hong-bing. End temperature prediction of molten steel in RH based on integrated case-based reasoning[J]. Chinese Journal of Engineering, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023
    Citation: FENG Kai, XU An-jun, HE Dong-feng, WANG Hong-bing. End temperature prediction of molten steel in RH based on integrated case-based reasoning[J]. Chinese Journal of Engineering, 2018, 40(S1): 161-167. doi: 10.13374/j.issn2095-9389.2018.s1.023

    基于集成案例推理方法的RH精煉鋼水終點溫度預測

    doi: 10.13374/j.issn2095-9389.2018.s1.023
    基金項目: 

    國家重點研發計劃資助重點專項 (2016YFB0601301)

    國家自然科學基金資助項目 (51574032)

    中央高校基本科研業務費資助項目 (FRF-TP-16-081A1)

    詳細信息
      通訊作者:

      馮凱, E-mail:fengkai-show@163.com

    • 中圖分類號: TF769.4

    End temperature prediction of molten steel in RH based on integrated case-based reasoning

    • 摘要: 針對RH工序終點鋼水溫度預測問題, 提出一種基于多元線性回歸和遺傳算法改進的集成案例推理方法.首先, 針對一般案例推理方法中缺少影響因素精選方法的問題, 利用多元線性回歸進行屬性約簡;然后, 針對案例檢索中相似度計算缺少權重計算方法的問題, 利用遺傳算法進行權重優化;最后, 基于精簡的影響因素和優化的權重, 利用改進灰色關聯相似度進行案例檢索, 實現RH終點鋼水溫度預測.利用某鋼鐵企業RH工序實際生產數據分別對多元線性回歸、BP神經網絡、一般案例推理方法和集成案例推理方法進行測試, 結果表明, 集成案例推理方法在多個溫度區間比多元線性回歸、BP神經網絡和一般案例推理方法都有更高的預測精度.

       

    • [1] Wang H B, Cai J, Feng K. Predicting the endpoint phosphorus content of molten steel in BOF by two-stage hybrid method. J Iron Steel Res Int, 2014, 21 (S1) :65
      [2] Liang Y R, Wang H B, Xu A J, et al. A two-step case-based reasoning method based on attributes reduction for predicting the endpoint phosphorus content. ISIJ Int, 2015, 55 (5) :1035
      [3] Wang X, Yuan P, Mao Z, et al. Molten steel temperature prediction model based on bootstrap feature subsets ensemble regression trees. Knowledge Based Syst, 2016, 101 (6) :48
      [4] Wang X, You M, Mao Z, et al. Tree-structure ensemble general regression neural networks applied to predict the molten steel temperature in ladle furnace. Adv Eng Inf, 2016, 30 (3) :368
      [5] Yue Y J, Yao Y D, Zhao H, et al. BOF endpoint prediction based on multi-neural network model. Appl Mech Mater, 2014, 441:666
      [6] Wang Z, Xie F, Wang B, et al. The control and prediction of end-point phosphorus content during BOF steelmaking process.Steel Res Int, 2014, 85 (4) :599
      [7] Wang H B, Xu A J, Ai L X, et al. Prediction of endpoint phosphorus content of molten steel in BOF using weighted K-means and GMDH neural network. J Iron Steel Res Int, 2012, 19 (1) :11
      [8] Feng K, He D, Xu A, et al. End temperature prediction of molten steel in LF based on CBR-BBN. Steel Res Int, 2016, 87 (1) :79
      [9] LüW, Mao Z Z, Yuan P. Ladle furnace steel temperature prediction model based on partial linear regularization networks with sparse representation. Steel Res Int, 2012, 83 (3) :288
      [10] Ahmad I, Kano M, Hasebe S, et al. Gray-box modeling for prediction and control of molten steel temperature in tundish. J Process Control, 2014, 24 (4) :375
      [11] Okura T, Ahmad I, Kano M, et al. High-performance prediction of molten steel temperature in tundish through gray-box model.ISIJ Int, 2013, 53 (1) :76
      [12] Wang H B, Xu A J, Ai L X, et al. An integrated CBR model for predicting endpoint temperature of molten steel in AOD. ISIJ Int, 2012, 52 (1) :80
      [13] He F, Xu A J, Wang H B, et al. End temperature prediction of molten steel in LF based on CBR. Steel Res Int, 2012, 83 (11) :1079
      [14] Feng K, Wang H B, Xu A J, et al. Endpoint temperature prediction of molten steel in RH using improved case-based reasoning. Int J Miner Metall Mater, 2013, 20 (12) :1148
      [15] Pal S, Halder C. Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms. Steel Res Int, 2017, 88 (3) :art.No. 1600193
      [16] Worapradya K, Thanakijkasem P. Optimising steel production shedules via a hierarchical genetic algorithm. S Afr J Ind Eng, 2014, 25 (2) :209
    • 加載中
    計量
    • 文章訪問數:  23
    • HTML全文瀏覽量:  9
    • PDF下載量:  0
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-01-20
    • 網絡出版日期:  2023-07-18

    目錄

      /

      返回文章
      返回
      中文字幕在线观看