• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制

    王瑩 李曉謙 李瑞卿 田陽

    王瑩, 李曉謙, 李瑞卿, 田陽. 大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制[J]. 工程科學學報, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
    引用本文: 王瑩, 李曉謙, 李瑞卿, 田陽. 大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制[J]. 工程科學學報, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
    WANG Ying, LI Xiao-qian, LI Rui-qing, TIAN Yang. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting[J]. Chinese Journal of Engineering, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
    Citation: WANG Ying, LI Xiao-qian, LI Rui-qing, TIAN Yang. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting[J]. Chinese Journal of Engineering, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010

    大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制

    doi: 10.13374/j.issn2095-9389.2019.01.010
    基金項目: 

    國家自然科學基金資助項目 51475480

    國家自然科學基金資助項目 51575539

    國家自然科學基金資助項目 51605496

    國家自然科學基金資助項目 U1637601

    中南大學研究生自主探索創新資助項目 1053320171530

    詳細信息
      通訊作者:

      李瑞卿, E-mail: lll87430@126.com

    • 中圖分類號: TG148;TB559

    Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting

    More Information
    • 摘要: 在直徑為650 mm的鋁合金熱頂半連續鑄造過程中施加雙源超聲振動系統, 研究3種超聲輻射桿浸入深度對鑄錠宏觀凝固組織的影響.基于鋁合金鑄錠凝固組織形貌的檢測結果以及ANSYS等有限元軟件對鑄造過程中聲場的仿真結果, 深入探討了超聲輻射桿在不同的施振深度下對鋁合金鑄錠凝固組織細化機制的影響.結果表明: 隨著超聲輻射桿施振深度的增加, 鑄錠截面組織整體進一步細化, 晶粒形狀由發達的枝晶變為等軸枝晶; 由于超聲輻射桿端面以及柱面存在幾個固定位置處振動波峰, 在鋁熔體中不同的超聲施振深度下存在不同的超聲空化范圍, 進而導致凝固組織的細化機制也不同.

       

    • 圖  1  鑄造及檢測示意圖(a)雙源超聲熱頂式鑄造;(b)凝固組織取樣位置

      Figure  1.  Casting and testing schematic: (a) hot-top dual-source ultrasonic casting; (b) solidified tissue sampling position

      圖  2  雙源超聲鑄造仿真模型

      Figure  2.  Dual-source ultrasonic casting simulation model

      圖  3  不同施振深度的鑄錠顯微組織(Ⅰ—未施加;Ⅱ—110 mm;Ⅲ—190 mm;Ⅳ—280 mm;A—中心處;B—1/2半徑附近;C—邊部)

      Figure  3.  Different casting depths of ingot microstructure(Ⅰ— not working; Ⅱ—110 mm; Ⅲ—190 mm; Ⅳ—280 mm; A—center; B—near 1/2 radius; C—edge)

      圖  4  顯微組織變化曲線

      Figure  4.  Distribution of grain size with four ingots

      圖  5  不同施振深度下的聲場分布. (a)H=110 mm;(b)H=190 mm;(c)H=280 mm

      Figure  5.  Distribution of sound field under different vibration depths: (a)H=110 mm; (b)H=190 mm; (c)H=280 mm

      圖  6  輻射桿柱面的聲場分布

      Figure  6.  Distribution of the sound field of the cylinder of the radiation rod

      圖  7  不同施振深度的超聲作用機制圖.(a)H=110 mm;(b)H=190 mm;(c)H=280 mm

      Figure  7.  Different vibration mechanisms at the depths of the ultrasound mechanism: (a)H=110 mm; (b)H=190 mm; (c)H=280 mm

      圖  8  不同施振深度的輻射桿腐蝕形貌. (a) 未施加; (b) 110 mm; (c) 190 mm; (d) 280 mm

      Figure  8.  Radiation rod with different depths of shock corrosion morphology: (a) not working; (b) 110 mm; (c) 190 mm; (d) 280 mm

      中文字幕在线观看
    • [1] Wang F, Eskin D, Connolley T, et al. Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy. J Cryst Growth, 2016, 435: 24 doi: 10.1016/j.jcrysgro.2015.11.034
      [2] Moholkar V S, Rekveld S, Warmoeskerken M M C G. Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 2000, 38(1-8): 666 doi: 10.1016/S0041-624X(99)00204-8
      [3] Li X T, Li T J, Li X M, et al. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy. Ultrason Sonochem, 2006, 13(2): 121 doi: 10.1016/j.ultsonch.2005.08.005
      [4] Eskin G I. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots. Z Metallkd, 2002, 93(6): 502 doi: 10.3139/146.020502
      [5] Komarov S V, Kuwabara M, Abramov O V. High power ultrasonic in pyrometallurgy: current status and recent development. ISIJ Int, 2005, 45(12): 1765 doi: 10.2355/isijinternational.45.1765
      [6] Chen D X, Li X Q, Li Z H, et al. Microstructure and macro-segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm

      陳鼎欣, 李曉謙, 黎正華, 等. 超聲鑄造7050鋁合金的微觀組織和宏觀偏析規律. 北京科技大學學報, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
      [7] Li Z H, Li X Q, Hu S C, et al. Effect of 7050 aluminum alloy melt treated by ultrasonic on macrosegregation in ingot. J Cent South Univ Sci Technol, 2011, 42(9): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109023.htm

      黎正華, 李曉謙, 胡仕成, 等. 熔體超聲處理對7050鋁合金鑄錠宏觀偏析的影響. 中南大學學報(自然科學版), 2011, 42(9): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109023.htm
      [8] Li R Q, Liu Z L, Dong F, et al. Grain refinement of a large-scale Al alloy casting by introducing the multiple ultrasonic generators during solidification. Metall Mater Trans A, 2016, 47(8): 3790 doi: 10.1007/s11661-016-3576-6
      [9] Tudela I, Sáez V, Esclapez M D, et al. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review. Ultrason Sonochem, 2014, 21(3): 909 doi: 10.1016/j.ultsonch.2013.11.012
      [10] Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3): 319 doi: 10.1016/S1350-4177(00)00074-2
      [11] Liu X B, Osawa Y, Takamori S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A, 2008, 487(1-2): 120 doi: 10.1016/j.msea.2007.09.071
      [12] Eskin G I. Principles of ultrasonic treatment: application for light alloys melts. Adv Perform Mater, 1997, 4(2): 223 doi: 10.1023/A:1008603815525
      [13] Nie M X. Cavitation prevention with roughened surface. J Hydraul Eng, 2015, 127(10): 878
      [14] Doyle W M. Aluminum alloys: structure and properties. Met Sci, 1976, 35(11): 408
      [15] Li X T, Zhao J Q, Ning S B, et al. Effect of high-intensity ultrasonic on the solidification of Al-1%Si alloy by horizontally continuous cast. Rare Met Mater Eng, 2006, 35(Suppl 2): 284 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2006S2070.htm

      李新濤, 趙建強, 寧紹斌, 等. 功率超聲對水平連鑄Al-1%Si合金凝固的影響. 稀有金屬材料與工程, 2006, 35(增刊2): 284 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2006S2070.htm
      [16] Fan X M. Metal Solidification Theory and Technology. Wuhan: Wuhan University of Technology Press, 2012

      范曉明. 金屬凝固理論與技術. 武漢: 武漢理工大學出版社, 2012
      [17] Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609011.htm

      徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9): 1270 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609011.htm
      [18] Dong F, Li X Q, Zhang L H, et al. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt. Ultrason Sonochem, 2016, 31: 150 doi: 10.1016/j.ultsonch.2015.12.009
    • 加載中
    圖(8)
    計量
    • 文章訪問數:  1156
    • HTML全文瀏覽量:  340
    • PDF下載量:  24
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2017-12-07
    • 刊出日期:  2019-01-01

    目錄

      /

      返回文章
      返回