• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制

    侯瓊 陶宇 賈建

    侯瓊, 陶宇, 賈建. 新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制[J]. 工程科學學報, 2019, 41(2): 209-215. doi: 10.13374/j.issn2095-9389.2019.02.007
    引用本文: 侯瓊, 陶宇, 賈建. 新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制[J]. 工程科學學報, 2019, 41(2): 209-215. doi: 10.13374/j.issn2095-9389.2019.02.007
    HOU Qiong, TAO Yu, JIA Jian. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging[J]. Chinese Journal of Engineering, 2019, 41(2): 209-215. doi: 10.13374/j.issn2095-9389.2019.02.007
    Citation: HOU Qiong, TAO Yu, JIA Jian. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging[J]. Chinese Journal of Engineering, 2019, 41(2): 209-215. doi: 10.13374/j.issn2095-9389.2019.02.007

    新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制

    doi: 10.13374/j.issn2095-9389.2019.02.007
    詳細信息
      通訊作者:

      陶宇, E-mail: tao0125@sina.com

    • 中圖分類號: TF125.4

    Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging

    More Information
    • 摘要: 為探索多火次等溫鍛造對新型粉末高溫合金晶粒細化的影響, 本文對實驗合金進行了每火次變形量40%左右的三火次等溫鍛造, 采用商用有限元軟件DEFORM 2D模擬鍛造過程中的等效應變分布圖, 采用電子背散射衍射技術對各火次后的鍛坯進行顯微組織觀察和分析.研究表明: 等溫鍛造過程中, 鍛坯軸向剖面大致分為三個區域, 位于上、下兩端面附近的Ⅰ區變形量最小, 位于兩側附近的Ⅱ區次之, 位于剖面中心的Ⅲ區變形程度最大.經過三火次等溫鍛造后, 鍛坯Ⅱ、Ⅲ區再結晶充分, 獲得等軸細晶組織, 平均晶粒尺寸2~3 μm.然而Ⅰ區形成再結晶不完全的"項鏈"組織, 在變形晶粒周圍分布大量細小的再結晶晶粒, 變形晶粒內小角度晶界含量較多, 位錯密度較高.通過對三火次后的鍛坯進行合適的熱處理, Ⅰ區"項鏈"組織得到細化, Ⅱ、Ⅲ區組織發生晶粒長大, 整個盤坯為較均勻的細晶組織, 平均晶粒尺寸為6~8 μm.

       

    • 圖  1  合金HIP態組織. (a) 反極圖; (b) 晶粒尺寸分布圖

      Figure  1.  Microstructure of HIPed alloy: (a) IPF map; (b) distribution of grain size

      圖  2  鍛坯宏觀組織及有限元模擬等效應變分布圖. (a, d) A; (b, e) B; (c, f) C

      Figure  2.  Macrostructures and simulation results of effective strain distribution of the forgings: (a, d) A; (b, e) B; (c, f) C

      圖  3  鍛坯各區域反極圖. (a) A-Ⅰ; (b) A-Ⅱ; (c) A-Ⅲ; (d) B-Ⅰ; (e) B-Ⅱ; (f) B-Ⅲ; (g) C-Ⅰ; (h) C-Ⅱ; (i) C-Ⅲ

      Figure  3.  IPF maps of each region of the forgings: (a) A-Ⅰ; (b) A-Ⅱ; (c) A-Ⅲ; (d) B-Ⅰ; (e) B-Ⅱ; (f) B-Ⅲ; (g) C-Ⅰ; (h) C-Ⅱ; (i) C-Ⅲ

      圖  4  鍛坯各區域取向成像圖. (a) A-Ⅰ; (b) A-Ⅱ; (c) A-Ⅲ; (d) B-Ⅰ; (e) B-Ⅱ; (f) B-Ⅲ; (g) C-Ⅰ; (h) C-Ⅱ; (i) C-Ⅲ

      Figure  4.  OIM maps of each region of the forgings: (a) A-Ⅰ; (b) A-Ⅱ; (c) A-Ⅲ; (d) B-Ⅰ; (e) B-Ⅱ; (f) B-Ⅲ; (g) C-Ⅰ; (h) C-Ⅱ; (i) C-Ⅲ

      圖  5  鍛坯各區域晶界取向差匯總

      Figure  5.  Summary of the misorientation of each region of the forgings

      圖  6  鍛坯經1150 ℃保溫2 h熱處理后各區域的花樣質量襯度圖. (a) Ⅰ; (b) Ⅱ; (c) Ⅲ

      Figure  6.  Band contrast maps of each region of the forging after heat treatment at 1150 ℃ for 2 h: (a) Ⅰ; (b) Ⅱ; (c) Ⅲ

      表  1  實驗錠坯不同等溫鍛造試驗變形參數

      Table  1.   Deformation parameters of the alloy billets under different steps of ITF

      錠坯編號 第一火次鍛造 第二火次鍛造 第三火次鍛造
      變形量 應變速率/s-1 變形量 應變速率/s-1 變形量 應變速率/s-1
      A 0.42 0.053
      B 0.42 0.052 0.41 0.074
      C 0.42 0.060 0.41 0.075 0.39 0.025
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Mater China, 2013, 32(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301003.htm

      張義文, 劉建濤. 粉末高溫合金研究進展. 中國材料進展, 2013, 32(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301003.htm
      [2] Wu C J, Tao Y, Jia J. Study on composition variation range of the fourth generation PM superalloys. Powder Metall Ind, 2014, 24(1): 20 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201401008.htm

      吳超杰, 陶宇, 賈建. 第四代粉末高溫合金成分選取范圍研究. 粉末冶金工業, 2014, 24(1): 20 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201401008.htm
      [3] Wu C J, Tao Y, Jia J. Microstructure and properties of an advanced nickel-base PM superalloy. J Iron Steel Res Int, 2014, 21(12): 1152 doi: 10.1016/S1006-706X(14)60198-9
      [4] Reynolds P L. Superalloy Compositions, Articles, and Methods of Manufacture: US Patent, 8147749. 2012-04-03
      [5] Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy DOE: chemistry, properties, phase formations and thermal stability//Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. Hoboken, 2016: 189
      [6] Mourer D P, Raymond E, Ganesh S, et al. Dual alloy disk development//Superalloys 1996. Warrendale, 1996: 637
      [7] Gayda J. Dual microstructure heat treatment of a nickel-base disk alloy[J/OL]. NASA Technical Reports Server (2001-11-01)[2018-12-26]. https://ntrs.nasa.gov/search.jsp?R=20020013802
      [8] Gayda J, Gabb T P, Kantzos P T. The effect of dual microstructure heat treatment on an advanced nickel-base disk alloy//Superalloys 2004. Warrendale, 2004: 323
      [9] Tao Y, Zhang G X, Liu J T. Study on design of the device for thermal gradient heat-treatment process of PM superalloy disks. J Iron Steel Res, 2011, 23(Suppl 2): 486 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON2011S2127.htm

      陶宇, 張國星, 劉建濤. 粉末渦輪盤溫度梯度熱處理工裝設計研究. 鋼鐵研究學報, 2011, 23(增刊2): 486 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON2011S2127.htm
      [10] Tao Y, Jia J, Liu J T, et al. Preparation Method of Ultra-Fine Grain Nickel Based Superalloy: China Patent, CN102392147A. 2012-03-28

      陶宇, 賈建, 劉建濤, 等. 超細晶鎳基粉末高溫合金的制備方法: 中國專利, CN102392147A. 2012-03-28
      [11] Liu Y, Tao Y, Jia J. The microstructure evolution of FGH98 P/M superalloy after hot deformation. Powder Metall Ind, 2011, 21(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201102006.htm

      劉洋, 陶宇, 賈建. FGH98粉末冶金高溫合金熱變形過程中組織變化. 粉末冶金工業, 2011, 21(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201102006.htm
      [12] Ning Y Q, Yao Z K, Wu Z, et al. The effects of repeated firing forging on microstructure and mechanical properties of GH4133A alloys. J Plast Eng, 2008, 15(4): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC200804023.htm

      寧永權, 姚澤坤, 吳澤, 等. 多火次鍛造對GH4133A合金組織和性能的影響. 塑性工程學報, 2008, 15(4): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC200804023.htm
      [13] Ning Y Q, Yao Z K. Recrystallization nucleation mechanism of FGH4096 powder metallurgy superalloy. Acta Metall Sinica, 2012, 42(8): 1005 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201208018.htm

      寧永權, 姚澤坤. FGH4096粉末高溫合金的再結晶形核機制. 金屬學報, 2012, 48(8): 1005 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201208018.htm
      [14] Xie X H, Yao Z K, Ning Y Q, et al. Dynamic recrystallization and grain refining of superalloy FGH4096. J Aeron Mater, 2011, 31(1): 20 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201101005.htm

      謝興華, 姚澤坤, 寧永權, 等. FGH4096合金的動態再結晶與晶粒細化研究. 航空材料學報, 2011, 31(1): 20 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201101005.htm
      [15] He G A, Liu F, Huang L, et al. Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression. Mater Sci Eng A, 2016, 677: 496 http://www.sciencedirect.com/science/article/pii/s0921509316311650
      [16] Zhang B J, Zhao G P, Jiao L Y, et al. Influence of hot working process on microstructures of superalloy GH4586. Acta Metall Sinica, 2005, 41(4): 351 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200504004.htm

      張北江, 趙光普, 焦蘭英, 等. 熱加工工藝對GH4586合金微觀組織的影響. 金屬學報, 2005, 41(4): 351 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200504004.htm
    • 加載中
    圖(6) / 表(1)
    計量
    • 文章訪問數:  1112
    • HTML全文瀏覽量:  591
    • PDF下載量:  45
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-01-17
    • 刊出日期:  2019-02-01

    目錄

      /

      返回文章
      返回