• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    Cr和Si元素對奧氏體不銹鋼組織構成及凝固路線的影響

    易昊鈺 陳思含 王旻 梁田 馬穎澈

    易昊鈺, 陳思含, 王旻, 梁田, 馬穎澈. Cr和Si元素對奧氏體不銹鋼組織構成及凝固路線的影響[J]. 工程科學學報, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003
    引用本文: 易昊鈺, 陳思含, 王旻, 梁田, 馬穎澈. Cr和Si元素對奧氏體不銹鋼組織構成及凝固路線的影響[J]. 工程科學學報, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003
    YI Hao-yu, CHEN Si-han, WANG Min, LIANG Tian, MA Ying-che. Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel[J]. Chinese Journal of Engineering, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003
    Citation: YI Hao-yu, CHEN Si-han, WANG Min, LIANG Tian, MA Ying-che. Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel[J]. Chinese Journal of Engineering, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003

    Cr和Si元素對奧氏體不銹鋼組織構成及凝固路線的影響

    doi: 10.13374/j.issn2095-9389.2019.02.24.003
    基金項目: 遼寧省自然科學基金資助項目(2019-BS-248)
    詳細信息
      通訊作者:

      E-mail:minwang@imr.ac.cn

    • 中圖分類號: TG142.71

    Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel

    More Information
    • 摘要: 以316Ti奧氏體不銹鋼為基礎,設計不同Cr和Si元素含量的合金成分,結合Thermal-Calc熱力學模擬計算與合金鑄錠凝固組織形貌、成分分析,研究了Cr和Si元素對合金凝固組織構成的影響。研究結果表明,熱力學計算能夠獲得奧氏體不銹鋼中析出δ相的臨界Cr和Si含量。合金凝固時的元素偏析和冷卻過程中的“δ→γ”相變可對δ相析出預測產生一定影響。此外,本工作還針對δ相析出評價了兩種凝固路線判據。

       

    • 圖  1  合金熱力學計算平衡相圖(0~10%質量分數)。 (a) Cr20?Si2.0;(b) Cr18?Si2.0;(c) Cr16?Si2.0;(d) Cr18?Si2.5;(e) Cr18?Si1.5

      Figure  1.  Thermodynamically calculated equilibrium phase diagrams for alloys (0–10%): (a) Cr20?Si2.0; (b) Cr18?Si2.0; (c) Cr16?Si2.0; (d) Cr18?Si2.5; (e) Cr18?Si1.5%

      圖  2  Cr(a)和Si(b)元素在Cr18?Si2.0基體中的偽二元相圖

      Figure  2.  Pseudo-binary diagrams of Cr (a) and Si (b) in the Cr18?Si2.0 matrix

      圖  3  合金鑄錠凝固組織金相顯微形貌. (a) Cr20?Si2.0;(b) Cr18?Si2.5;(c) Cr18?Si2.0

      Figure  3.  Optical observations:(a) Cr20?Si2.0;(b) Cr18?Si2.5;(c) Cr18?Si2.0

      圖  4  合金鑄錠凝固組織掃描電鏡顯微形貌。 (a) Cr20?Si2.0; (b) Cr18?Si2.5;(c) Cr18?Si2.0

      Figure  4.  SEM observations:(a) Cr20?Si2.0;(b) Cr18?Si2.5;(c) Cr18?Si2.0

      圖  5  Cr20?Si2.0合金X射線衍射譜線

      Figure  5.  XRD analysis result of the Cr20?Si2.0 alloy

      表  1  合金設計成分(質量分數)

      Table  1.   Design compositions of alloys %

      試樣CCrSiMoNiTiCuMnFe
      Cr20?Si2.00.06202.01.5150.361.51.5余量
      Cr18?Si2.00.06182.01.5150.361.51.5余量
      Cr16?Si2.00.06162.01.5150.361.51.5余量
      Cr18?Si2.50.06182.51.5150.361.51.5余量
      Cr18?Si1.50.06181.51.5150.361.51.5余量
      下載: 導出CSV

      表  2  合金鑄錠檢測成分(質量分數)

      Table  2.   Chemical-tested compositions of ingots %

      試樣CCrSiMoNiTiCuMnNAlFe
      Cr20?Si2.00.06319.742.011.5215.010.361.601.480.00320.029余量
      Cr18?Si2.00.06317.711.991.5115.300.371.531.480.00240.030余量
      Cr16?Si2.00.06615.762.011.5015.210.371.541.490.00220.032余量
      Cr18?Si2.50.06317.812.511.5515.070.391.541.470.00260.029余量
      Cr18?Si1.50.06517.731.531.5415.220.381.521.490.00260.031余量
      下載: 導出CSV

      表  3  設計成分合金的熱力學計算固液相線溫度與凝固溫度區間

      Table  3.   Thermodynamically calculated liquids and solidus temperatures of alloys

      合金液相線溫度/℃固相線溫度/℃凝固區間/℃
      Cr20?Si2.01386133254
      Cr18?Si2.01394134054
      Cr16?Si2.01401134457
      Cr18?Si2.51385132065
      Cr18?Si1.51402135052
      下載: 導出CSV

      表  4  Cr18?Si2.5合金鑄態組織析出相成分分析(質量分數)

      Table  4.   EDS analysis result of the Cr18?Si2.5 alloy %

      CSiTiCrMnFeNiCuMo總計
      11.030.3815.801.2658.1519.182.172.03100
      21.6321.482.0457.8111.121.584.33100
      321.3357.132.606.182.0710.69100
      下載: 導出CSV

      表  5  合金Ni和Cr當量以及凝固路線判據計算(質量分數)

      Table  5.   Calculations on the Ni and Cr equivalent contents and solidification path criteria %

      試樣Hammer & Svensson[23]Rajasekhar[24]
      NieqCreqФNieqCreqCreq / Nieq
      Cr20?Si2.018.3625.78?0.7218.0824.501.36
      Cr18?Si2.018.3623.780.7818.0822.501.24
      Cr16?Si2.018.3621.782.2818.0820.501.13
      Cr18?Si2.518.3624.530.2218.0823.251.29
      Cr18?Si1.518.3623.031.3418.0821.751.20
      下載: 導出CSV
      中文字幕在线观看
    • [1] Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature. Acta Metall Sin, 2006, 42(3): 299 doi: 10.3321/j.issn:0412-1961.2006.03.013

      程學群, 李曉剛, 杜翠薇. 316L不銹鋼在含Cl-高溫醋酸溶液中的電化學行為. 金屬學報, 2006, 42(3):299 doi: 10.3321/j.issn:0412-1961.2006.03.013
      [2] Liu Z D. Common selection of Cr-Ni austenitic stainless steel. Petro-Chem Equip Technol, 1999, 20(3): 39

      柳曾典. 常用鉻鎳奧氏體不銹鋼的選用. 石油化工設備技術, 1999, 20(3):39
      [3] Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Ins, 2007, 2007: 97486
      [4] Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0
      [5] Lambrinou K, Charalampopoulou E, Van der Donck T, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃. J Nucl Mater, 2017, 490: 9 doi: 10.1016/j.jnucmat.2017.04.004
      [6] Johnson A L, Parsons D, Manzerova J, et al. Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation. J Nucl Mater, 2004, 328(2-3): 88 doi: 10.1016/j.jnucmat.2004.03.006
      [7] Kurata Y, Futakawa M. Excellent corrosion resistance of 18Cr–20Ni–5Si steel in liquid Pb–Bi. J Nucl Mater, 2004, 325: 217 doi: 10.1016/j.jnucmat.2003.12.009
      [8] Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth. J Nucl Mater, 2006, 356(1-3): 203 doi: 10.1016/j.jnucmat.2006.05.019
      [9] Wang Q C, Ren Y B, Yao C F, et al. Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels. Metall Mater Trans A, 2015, 46(12): 5537 doi: 10.1007/s11661-015-3160-5
      [10] Shu W, Li J, Lian X J, et al. Effect of heat treatment on the high temperature ductility of 00Cr24Ni13 austenitic stainless steel casting billets. Chin J Eng, 2015, 37(2): 190

      舒瑋, 李俊, 廉曉潔, 等. 熱處理對奧氏體不銹鋼00Cr24Ni13鑄坯高溫熱塑性的影響. 工程科學學報, 2015, 37(2):190
      [11] Bai G S, Lu S P, Li D Z, et al. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel. Corros Sci, 2015, 90: 347 doi: 10.1016/j.corsci.2014.10.031
      [12] Okane T, Umeda T. Eutectic growth of unidirectionally solidified Fe-Cr-Ni alloy. ISIJ Int, 1998, 38(5): 454 doi: 10.2355/isijinternational.38.454
      [13] Ferrandini P L, Rios C T, Dutra A T, et al. Solute segregation and microstructure of directionally solidified austenitic stainless steel. Mater Sci Eng A, 2006, 435-436: 139 doi: 10.1016/j.msea.2006.07.024
      [14] Brooks J A, Williams J C, Thompson A W. STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A, 1983, 14(1): 23 doi: 10.1007/BF02643733
      [15] Fu J W, Sun J J, Cen X, et al. Growth behavior and orientation relationships in AISI 304 stainless steel during directional solidification. Mater Charact, 2018, 139: 241 doi: 10.1016/j.matchar.2018.03.015
      [16] Song Y, Baker T N, McPherson N A. A study of precipitation in as-welded 316LN plate using 316L/317L weld metal. Mater Sci Eng A, 1996, 212(2): 228 doi: 10.1016/0921-5093(96)10199-4
      [17] Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 C up to 10 years. J Nucl Mater, 2007, 362(1): 132 doi: 10.1016/j.jnucmat.2006.12.027
      [18] Gill T P S, Shankar V, Pujar M G, et al. Effect of composition on the transformation of δ-ferrite to σ in type 316 stainless steel weld metals. Scripta Metall Mater, 1995, 32(10): 1595 doi: 10.1016/0956-716X(95)00242-N
      [19] Sun H Y, Zhou Z J, Wang M, et al. Microstructures and mechanical properties of a new 310 austenitic stainless steel during long term aging. Chin J Eng, 2015, 37(5): 600

      孫紅英, 周張健, 王曼, 等. 改進310奧氏體不銹鋼長期時效后的組織與性能. 工程科學學報, 2015, 37(5):600
      [20] Mataya M C, Nilsson E R, Brown E L, et al. Hot working and recrystallization of as-cast 317L. Metall Mater Trans A, 2003, 34(12): 3021 doi: 10.1007/s11661-003-0201-2
      [21] Di Schino A, Mecozzi M G, Barteri M, et al. Solidification mode and residual ferrite in low-Ni austenitic stainless steels. J Mater Sci, 2000, 35(2): 375 doi: 10.1023/A:1004774130483
      [22] Fu J W, Yang Y S, Guo J J, et al. Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification. J Cryst Growth, 2008, 311(1): 132 doi: 10.1016/j.jcrysgro.2008.10.021
      [23] Hammer O, Svensson U. Solidification and Casting of Metals. London: The Metals Society, 1979: 401
      [24] Rajasekhar K, Harendranath C S, Raman R, et al. Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater Charact, 1997, 38(2): 53 doi: 10.1016/S1044-5803(97)80024-1
    • 加載中
    圖(5) / 表(5)
    計量
    • 文章訪問數:  1918
    • HTML全文瀏覽量:  2024
    • PDF下載量:  103
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-02-24
    • 刊出日期:  2020-02-01

    目錄

      /

      返回文章
      返回