• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配

    劉超 江河 董建新 章清泉

    劉超, 江河, 董建新, 章清泉. 鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配[J]. 工程科學學報, 2019, 41(3): 359-367. doi: 10.13374/j.issn2095-9389.2019.03.009
    引用本文: 劉超, 江河, 董建新, 章清泉. 鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配[J]. 工程科學學報, 2019, 41(3): 359-367. doi: 10.13374/j.issn2095-9389.2019.03.009
    LIU Chao, JIANG He, DONG Jian-xin, ZHANG Qing-quan. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605[J]. Chinese Journal of Engineering, 2019, 41(3): 359-367. doi: 10.13374/j.issn2095-9389.2019.03.009
    Citation: LIU Chao, JIANG He, DONG Jian-xin, ZHANG Qing-quan. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605[J]. Chinese Journal of Engineering, 2019, 41(3): 359-367. doi: 10.13374/j.issn2095-9389.2019.03.009

    鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配

    doi: 10.13374/j.issn2095-9389.2019.03.009
    基金項目: 

    國家自然科學基金資助項目 51571012

    中央高校基本業務費資助項目 2017YFB0305201

    詳細信息
      通訊作者:

      江河, E-mail: jianghe17@sina.cn

    • 中圖分類號: TG146.1

    As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605

    More Information
    • 摘要: 利用光學顯微鏡(OM)、場發射掃描電子顯微鏡(FESEM)、能譜分析(EDS) 并結合熱力學及動力學計算結果對采用真空感應熔煉和電渣重熔二聯工藝生產的GH5605合金電渣錠的枝晶形貌、元素偏析和析出相進行分析.探索了合金的高溫擴散退火制度并結合差示掃描量熱儀(DSC) 和熱壓縮模擬實驗分析高溫擴散退火前后的合金特征.結果表明: GH5605合金中的枝晶和元素偏析情況較輕, 主要偏析元素是Cr和W并在枝晶間處偏聚, 電渣錠中的主要析出相包括奧氏體、晶界M23C6以及晶內和晶界處的奧氏體與M23C6板條狀共晶相.經1210℃/8 h擴散退火處理后枝晶和元素偏析基本消除, 共晶相基本回溶.

       

    • 圖  1  電渣錠低倍形貌(a) 及不同位置金相組織和背散射照片. (b, e) 外緣; (c, f) 1/2半徑; (d, g) 心部

      Figure  1.  Low magnitude morphology (a) and metallography and backscatter photos of electroslag ingot at different positions: (b, e) edge; (c, f) 1/2radius; (d, g) center

      圖  2  Cr (a) 和W (b) 凝固過程再分配規律

      Figure  2.  Redistribution rules of Cr (a) and W (b) during solidification

      圖  3  電渣錠組織(a) 及局部放大圖(b)

      Figure  3.  Microstructure (a) and local magnitude micrographs (b) of ingot

      圖  4  電渣錠晶內(a, b) 和晶界(c, d) 典型析出相形貌

      Figure  4.  Typical precipitates morphology of inner grain (a, b) and grain boundary (c, d) in ingot

      圖  5  晶界典型形貌

      Figure  5.  Typical grain boundary morphology

      圖  6  GH5605合金平衡相圖(a) 和凝固動力學曲線(b)

      Figure  6.  Equilibrium phase diagram (a) and the solidification kinetics curve (b) of GH5605

      圖  7  GH5605合金電渣錠差示掃描量熱曲線

      Figure  7.  DSC curve of GH5605 ingot

      圖  8  1210℃保溫不同時間后電渣錠心部金相照片. (a) 4 h; (b) 8 h; (c) 12 h

      Figure  8.  Metallography of ingot center after annealing at 1210℃for different time: (a) 4 h; (b) 8 h; (c) 12 h

      圖  9  高溫擴散退火后GH5605合金的差示掃描量熱曲線

      Figure  9.  DSC curve of GH5605 after high temperature diffusion annealing

      圖  10  晶粒尺寸隨退火時間演變規律

      Figure  10.  Grain size evolution with annealing time

      圖  11  鑄態(a) 和退火態(b) Gleeble試樣顯微組織

      Figure  11.  Micrographs of as-cast (a) and annealing (b) Gleeble test samples

      表  1  GH5605合金化學成分(質量分數)

      Table  1.   Main chemical composition of GH5605 superalloy ?%

      C Cr Mn Fe Ni W Co
      0.09 19.75 1.55 2.40 10.36 14.65 余量
      下載: 導出CSV

      表  2  GH5605合金枝晶間距

      Table  2.   Dendrite spacing in GH5605 superalloy

      取樣位置 一次枝晶間距/μm 二次枝晶間距/μm
      外緣 115.65 93.25
      1/2半徑 225.00 115.00
      心部 237.50 132.13
      下載: 導出CSV

      表  3  鑄錠元素偏析系數

      Table  3.   Elements segregation coefficient of ingot

      取樣位置 C Cr Mn Fe Co Ni W
      外緣 0.97 1.10 1.31 0.92 0.93 0.94 1.13
      1/2半徑 0.95 1.08 1.31 0.93 0.95 0.96 1.10
      心部 0.94 1.14 1.40 0.86 0.91 0.87 1.25
      平均值 0.95 1.11 1.34 0.90 0.93 0.92 1.16
      下載: 導出CSV

      表  4  典型析出相成分(質量分數)

      Table  4.   Composition of typical precipitates ?%

      析出相 C Cr Mn Fe Co Ni W
      晶界析出相 4.73 43.99 1.95 1.67 22.68 4.42 20.57
      島狀析出相 3.33 26.39 1.46 1.04 18.70 2.24 46.84
      下載: 導出CSV

      表  5  不同退火制度下Cr和W的元素偏析系數

      Table  5.   Elements segregation coefficients of Cr and W in different an-nealing system

      元素 鑄態 1210℃/4h 1210℃/8h 1210℃/12h
      Cr 1.11 1.06 1.00 1.00
      W 1.16 1.04 1.00 1.00
      下載: 導出CSV
      中文字幕在线观看
    • [1] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008

      郭建亭. 高溫合金材料學. 北京: 科學出版社, 2008
      [2] Keyvani M, Garcin T, Fabrègue D, et al. Continuous measurements of recrystallization and grain growth in cobalt super alloys. Metall Mater Trans A, 2017, 48(5): 2363 doi: 10.1007/s11661-017-4027-8
      [3] Favre J, Koizumi Y, Chiba A, et al. Deformation behavior and dynamic recrystallization of biomedical Co-Cr-W-Ni (L-605) alloy. Metall Mater Trans A, 2013, 44(6): 2819 doi: 10.1007/s11661-012-1602-x
      [4] Kumar V A, Gupta R K, Murty S V S N, et al. Hot workability and microstructure control in Co20Cr15W10Ni cobalt based superalloy. J Alloys Compd, 2016, 676: 527 doi: 10.1016/j.jallcom.2016.03.186
      [5] Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co-20Cr-15W-10Ni alloy for biomedical application. Metall Mater Trans A, 2016, 47(6): 2773 doi: 10.1007/s11661-016-3488-5
      [6] Yamanaka K, Mori M, Kuramoto K, et al. Development of new Co-Cr-W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des, 2014, 55: 987 doi: 10.1016/j.matdes.2013.10.052
      [7] Academic Committee of the Superalloys, CSM. China Superalloys Handbooks (volume 1). Beijing: Standard Press of China, 2012

      中國金屬學會高溫材料分會. 中國高溫合金手冊(上卷). 北京: 中國標準出版社, 2012
      [8] Gui W M, Zhang H Y, Yang M, et al. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd, 2017, 728: 145 doi: 10.1016/j.jallcom.2017.08.287
      [9] Gui W M, Zhang H Y, Yang M, et al. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd, 2017, 695: 1271 doi: 10.1016/j.jallcom.2016.10.256
      [10] Koβmann J, Zenk C H, Lopez-Galilea I, et al. Microsegregation and precipitates of an as-cast Co-based superalloy-microstructural characterization and phase stability modelling. J Mate Sci, 2015, 50(19): 6329 doi: 10.1007/s10853-015-9177-8
      [11] Chiba A, Kurosu S, Akasaka Y, et al. Co-based Alloy for Living Body and Stent: United States Patent, 20130226281A1.2013-8-29
      [12] Magyar S T, Hirakis E C, Gell M L, et al. Oxidation Resistant Cobalt Base Alloy: United States Patent, US4078922A. 1978-3-14
      [13] Favre J, Fabrègue D, Maire E, et al. Grain growth and static recrystallization kinetics in Co-20Cr-15W-10Ni (L-605) cobaltbase superalloy. Philos Mag, 2014, 94(18): 1992 doi: 10.1080/14786435.2014.903342
      [14] Favre J, Fabrègue D, Yamanaka K, et al. Modeling dynamic recrystallization of L-605 cobalt superalloy. Mater Sci Eng A, 2016, 653: 84 doi: 10.1016/j.msea.2015.12.003
      [15] Weeton J W, Signorelli R A. An Investigation of Lamellar Structures and Minor Phase in Eleven Cobalt-Base Alloys Before and After Heat Treatment. Washington, 1954
      [16] Mani A, Salinas R, Lopez H F. Deformation induced FCC to HCP transformation in a Co-27Cr-5Mo-0.05C alloy. Mater Sci Eng A, 2011, 528(7-8): 3037 doi: 10.1016/j.msea.2010.12.024
      [17] Vacchieri E, Costa A, Roncallo G, et al. Service induced fcc→ hcp martensitic transformation in a Co-based superalloy. Mater Sci Technol, 2017, 33(9): 1100 doi: 10.1080/02670836.2016.1273866
      [18] Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Mater, 2013, 61(5): 1648 doi: 10.1016/j.actamat.2012.11.041
      [19] Bensona M L, Liaw P K, Saleh T A, et al. Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation. Phys B, 2006, 385-386: 523 doi: 10.1016/j.physb.2006.05.262
      [20] Tawancy H M, Ishwar V R, Lewis B E. On the fcc-hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25). J Mater Sci Lett, 1986, 5: 337 doi: 10.1007/BF01748098
      [21] Saldivar G, Mani M, Salinas R, et al. Effect of solution treatments on the fcc/hcp isothermal martensitic transformation in Co-27Cr-5Mo-0.05C aged at 800℃. Scripta Mater, 1999, 40(6): 717 doi: 10.1016/S1359-6462(98)00489-8
      [22] Jiang H, Dong J X, Zhang M C, et al. Microstructure and homogenization of as-cast 617B alloy for 700℃ ultra-supercritical boilers. J Univ Sci Technol Beijing, 2014, 36(6): 795 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406013.htm

      江河, 董建新, 張麥倉, 等. 700℃超超臨界鍋爐材料617B合金鑄態組織及均勻化工藝. 北京科技大學學報, 2014, 36(6): 795 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406013.htm
    • 加載中
    圖(11) / 表(5)
    計量
    • 文章訪問數:  1355
    • HTML全文瀏覽量:  572
    • PDF下載量:  53
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-02-03
    • 刊出日期:  2019-03-20

    目錄

      /

      返回文章
      返回