• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    安裝時間和機器受限的訂單接受與并行機調度

    王柏琳 李鐵克 王海鳳

    王柏琳, 李鐵克, 王海鳳. 安裝時間和機器受限的訂單接受與并行機調度[J]. 工程科學學報, 2019, 41(4): 528-538. doi: 10.13374/j.issn2095-9389.2019.04.014
    引用本文: 王柏琳, 李鐵克, 王海鳳. 安裝時間和機器受限的訂單接受與并行機調度[J]. 工程科學學報, 2019, 41(4): 528-538. doi: 10.13374/j.issn2095-9389.2019.04.014
    WANG Bai-lin, LI Tie-ke, WANG Hai-feng. Order acceptance and scheduling on parallel machines with setup time and machine-eligibility constraints[J]. Chinese Journal of Engineering, 2019, 41(4): 528-538. doi: 10.13374/j.issn2095-9389.2019.04.014
    Citation: WANG Bai-lin, LI Tie-ke, WANG Hai-feng. Order acceptance and scheduling on parallel machines with setup time and machine-eligibility constraints[J]. Chinese Journal of Engineering, 2019, 41(4): 528-538. doi: 10.13374/j.issn2095-9389.2019.04.014

    安裝時間和機器受限的訂單接受與并行機調度

    doi: 10.13374/j.issn2095-9389.2019.04.014
    基金項目: 

    國家自然科學基金資助項目 71701016

    國家自然科學基金資助項目 71471015

    北京市自然科學基金資助項目 9174038

    教育部人文社會科學研究青年基金 17YJC630143

    中央高校基本科研業務費資助項目 FRF-BD-18-009A

    詳細信息
      通訊作者:

      王柏琳, E-mail: wangbl@ustb.edu.cn

    • 中圖分類號: TP278

    Order acceptance and scheduling on parallel machines with setup time and machine-eligibility constraints

    More Information
    • 摘要: 訂單接受與不相關并行機調度是訂單接受與訂單調度的聯合決策, 廣泛存在于面向定制的多品種混合生產環境中. 針對這一問題, 考慮了順序與機器依賴的安裝時間以及可加工機器限制, 并以最小化總成本為優化目標. 其中, 總成本由被接受訂單的總拖期成本和被拒絕訂單的總拒絕成本構成. 通過分析訂單拒絕對目標的影響, 提出了列表拒絕方法和訂單拒絕規則, 進而設計了協同進化遺傳算法. 算法將染色體編碼分解為訂單列表和訂單指派兩個個體, 提出了基于列表拒絕方法的解碼方案來進行訂單拒絕決策. 由于兩個個體相互獨立, 且二者的進化約束不同, 因而引入協同進化策略, 并根據個體的編碼特征, 分別采用單親遺傳算子和傳統遺傳算子進行遺傳操作. 數據實驗驗證了算法的有效性和求解效率, 并對問題規模和訂單拒絕成本對算法性能的影響進行了分析.

       

    • 圖  1  CCGA的協同進化求解框架

      Figure  1.  Cooperative coevolution in CCGA

      圖  2  CCGA遺傳算子示意圖

      Figure  2.  Genetic operators of CCGA

      圖  3  4種算法的收斂曲線

      Figure  3.  Conversion rates of the four algorithms

      圖  4  CCGA和TGA的收斂曲線

      Figure  4.  Conversion rates of CCGA and TGA

      表  1  CPLEX與CCGA的實驗結果

      Table  1.   Experimental results for CPLEX and CCGA

      m t(n) CPLEX CCGA m t(n) CPLEX CCGA
      Avg. Time/s Avg. Opt./% Time/s Avg. Time/s Avg. Opt./% Time/s
      2 2(4) 0 0.072 0.9 70 0.022 3 4(12) 0.8 0.106 1.6 80 0.077
      3(6) 0.7 0.069 2.1 60 0.036 4 2(8) 2.1 0.086 2.1 100 0.055
      4(8) 0.8 0.084 2.8 70 0.048 3(12) 1.6 0.106 1.6 100 0.081
      3 2(6) 0 0.069 0.5 80 0.036 4(16) 0.8 0.220 3.2 70 0.109
      3(9) 0.1 0.077 0.8 90 0.056 平均值 0.77 0.099 1.73 80 0.058
      下載: 導出CSV

      表  2  4種算法求解每組算例的總成本均值、標準差與ANOVA分析結果

      Table  2.   Means and standard deviations of the total costs obtained by the four algorithms

      n m CCGA CCGAII TGA GADR ANOVA(α = 0. 05)
      Avg. Std. Avg. Std. Avg. Std. Avg. Std. F P-value
      20 2 2.80 3.37 3.74 4.36 7.54 5.38 14.88 18.22 15.40 4.88×10-9
      5 1.28 2.15 1.76 2.83 3.44 3.33 9.44 13.86 13.07 8.15×10-8
      50 2 3.90 4.22 9.84 7.80 35.02 12.17 59.06 53.86 40.93 1.39×10-20
      5 1.36 2.61 4.60 5.71 23.00 10.90 17.82 19.68 39.41 5.63×10-20
      10 1.46 2.60 3.78 4.39 18.60 8.71 7.22 8.43 66.85 8.15×10-30
      100 2 9.36 5.99 29.04 10.16 97.54 16.84 275.28 137.86 150.81 1.13×10-50
      5 6.38 5.81 19.98 11.15 77.04 15.05 72.12 55.02 75.72 1.44×10-32
      10 2.28 2.98 10.16 8.34 62.40 15.30 34.54 32.61 106.78 5.25×10-41
      15 1.46 2.14 7.04 6.71 55.66 13.32 24.68 27.25 122.77 8.93×10-45
      20 1.14 1.96 6.02 6.47 54.40 11.68 12.74 14.25 307.94 6.80×10-74
      150 2 19.76 10.20 57.96 16.16 154.78 19.06 606.68 236.72 258.03 8.62×10-68
      5 9.30 7.13 37.68 15.44 122.58 20.62 165.22 89.23 121.48 1.75×10-44
      10 5.20 4.94 23.54 12.99 107.70 20.60 72.60 47.45 151.68 7.59×10-51
      15 4.78 5.49 20.46 11.34 105.52 16.39 62.42 48.72 149.19 9.29×10-50
      20 4.40 4.82 13.86 8.80 100.98 16.69 48.60 39.99 193.02 2.97×10-58
      200 2 34.32 12.87 107.68 24.49 224.46 26.05 1217.00 436.96 317.92 5.14×10-75
      5 19.48 10.40 69.84 20.07 175.78 22.11 343.62 135.49 212.14 2.75×10-61
      10 12.42 6.76 45.28 18.15 151.48 19.03 150.94 76.30 157.65 5.35×10-52
      15 10.14 5.57 38.70 14.85 150.72 19.74 121.56 77.5 133.52 3.90×10-47
      20 4.78 4.48 23.82 10.77 135.92 20.03 77.06 46.06 261.06 3.45×10-68
      平均值 7.80 5.32 26.74 11.05 93.23 15.65 169.67 80.77 218.11 4.9×10-131
      下載: 導出CSV

      表  3  4種算法生成零成本問題解的算例數量

      Table  3.   Number of solutions with zero total cost produced by the four algorithms

      n m CCGA CCGAII TGA GADR n m CCGA CCGAII TGA GADR
      20 2 20 19 3 17 150 2 0 0 0 0
      5 31 28 14 21 5 2 0 0 0
      50 2 14 7 0 1 10 8 0 0 1
      5 31 23 0 13 15 9 0 0 2
      10 33 20 1 22 20 12 0 0 3
      100 2 0 0 0 0 200 2 0 0 0 0
      5 7 0 0 1 5 0 0 0 0
      10 22 7 0 5 10 0 0 0 0
      15 24 11 0 12 15 1 0 0 0
      20 32 11 0 15 20 9 0 0 0
      總計 255 126 18 113
      下載: 導出CSV

      表  4  4種算法的CPU時間

      Table  4.   CPU times of the four algorithms?s

      n m CCGA CCGAII TGA GADR n m CCGA CCGAII TGA GADR
      20 5 0.31 0.30 0.59 0.84 200 20 33.91 32.41 66.45 241.31
      100 10 7.72 7.37 15.46 32.98 平均值 14.24 13.23 23.28 72.28
      下載: 導出CSV
      中文字幕在线观看
    • [1] Slotnick S A. Order acceptance and scheduling: a taxonomy and review. Eur J Oper Res, 2011, 212(1): 1 doi: 10.1016/j.ejor.2010.09.042
      [2] Shabtay D, Gaspar N, Kaspi M. A survey on offline scheduling with rejection. J Scheduling, 2013, 16(1): 3 doi: 10.1007/s10951-012-0303-z
      [3] Angel E, Bampis E, Kononov A.A FPTAS for approximating the unrelated parallel machines scheduling problem with costs//European Symposium on Algorithms.Berlin, 2001: 194
      [4] Hoogeveen H, Skutella M, Woeginger G J. Preemptive scheduling with rejection. Math Program, 2003, 94(2-3): 361 doi: 10.1007/s10107-002-0324-z
      [5] Sengupta S.Algorithms and approximation schemes for minimum lateness/tardiness scheduling with rejection//International Workshop on Algorithms and Data Structures.Ottawa, 2003: 79
      [6] Miao C X, Zhang Y Z, Wang C F.Bounded parallel-batch scheduling on unrelated parallel machines//International Conference on Algorithmic Applications in Management.Berlin, 2010: 220
      [7] Hsu C J, Chang C W. Unrelated parallel-machine scheduling with deteriorating jobs and rejection. Appl Mech Mater, 2012, 263- 266: 655 doi: 10.4028/www.scientific.net/AMM.263-266.655
      [8] Lin F, Zhang X Z, Cai Z X. Approximation algorithms for scheduling with rejection on two unrelated parallel machines. Int J Adv Comput Sci Appl, 2015, 6(11): 260 https://journals.indexcopernicus.com/search/article?icid=1185391
      [9] Jiang D K, Tan J Y. Scheduling with job rejection and nonsimultaneous machine available time on unrelated parallel machines. Theor Comput Sci, 2016, 616: 94 doi: 10.1016/j.tcs.2015.12.020
      [10] Joo C M, Kim B S. Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Comput Ind Eng, 2015, 85: 102 doi: 10.1016/j.cie.2015.02.029
      [11] Chen J S, Yang J S. Model formulations for the machine scheduling problem with limited waiting time constraints. J Inform Optimiz Sci, 2006, 27(1): 225 doi: 10.1080/02522667.2006.10699688
      [12] Vallada E, Ruiz R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. Eur J Oper Res, 2011, 211(3): 612 doi: 10.1016/j.ejor.2011.01.011
      [13] Wu K J, Lu H W. PCEGA used to solve text feature selection. Syst Eng Theory Pract, 2012, 32(10): 2215 https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201210014.htm

      鄔開俊, 魯懷偉. 采用并行協同進化遺傳算法的文本特征選擇. 系統工程理論與實踐, 2012, 32(10): 2215 https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201210014.htm
      [14] Li X D, Yao X. Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput, 2012, 16 (2): 210 doi: 10.1109/TEVC.2011.2112662
      [15] Pan Q K. An effective co-evolutionary artificial bee colony algorithm for steelmaking- continuous casting scheduling. Eur J Oper Res, 2016, 250(3): 702 doi: 10.1016/j.ejor.2015.10.007
      [16] Li M J, Tong T S. A partheno genetic algorithm and analysis on its global convergence. Acta Autom Sin, 1999, 25(1): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO901.009.htm

      (李茂軍, 童調生. 單親遺傳算法及其全局收斂性分析. 自動化學報, 1999, 25(1): 68) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO901.009.htm
      [17] Wang J L, Huang W B, Ma G W, et al. An improved partheno genetic algorithm for multi-objective economic dispatch in cascaded hydropower systems. Int J Electr Power Energy Syst, 2015, 67: 591 doi: 10.1016/j.ijepes.2014.12.037
      [18] Zhu X, Li X P. Iterative search method for total flowtime minimization no-wait flowshop problem. Int J Mach Learn Cybern, 2015, 6(5): 747 doi: 10.1007/s13042-014-0312-7
      [19] Chen C L, Tzeng Y R, Chen C L. A new heuristic based on local best solution for permutation flow shop scheduling. Appl Soft Comput, 2015, 29: 75 doi: 10.1016/j.asoc.2014.12.011
    • 加載中
    圖(4) / 表(4)
    計量
    • 文章訪問數:  1086
    • HTML全文瀏覽量:  483
    • PDF下載量:  26
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-03-08
    • 刊出日期:  2019-04-15

    目錄

      /

      返回文章
      返回