• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    寬溫域高阻尼聚氨酯彈性體的制備

    盧珣 徐敏 李志鵬 李翰模 莊文輝

    盧珣, 徐敏, 李志鵬, 李翰模, 莊文輝. 寬溫域高阻尼聚氨酯彈性體的制備[J]. 工程科學學報, 2020, 42(3): 365-371. doi: 10.13374/j.issn2095-9389.2019.04.12.006
    引用本文: 盧珣, 徐敏, 李志鵬, 李翰模, 莊文輝. 寬溫域高阻尼聚氨酯彈性體的制備[J]. 工程科學學報, 2020, 42(3): 365-371. doi: 10.13374/j.issn2095-9389.2019.04.12.006
    LU Xun, XU Min, LI Zhi-peng, LI Han-mo, ZHUANG Wen-hui. Preparation of polyurethanes with broad temperature range and high damping factor[J]. Chinese Journal of Engineering, 2020, 42(3): 365-371. doi: 10.13374/j.issn2095-9389.2019.04.12.006
    Citation: LU Xun, XU Min, LI Zhi-peng, LI Han-mo, ZHUANG Wen-hui. Preparation of polyurethanes with broad temperature range and high damping factor[J]. Chinese Journal of Engineering, 2020, 42(3): 365-371. doi: 10.13374/j.issn2095-9389.2019.04.12.006

    寬溫域高阻尼聚氨酯彈性體的制備

    doi: 10.13374/j.issn2095-9389.2019.04.12.006
    基金項目: 國家自然科學基金資助項目(51873065);廣東省自然科學基金資助項目(2017A030313277)
    詳細信息
      通訊作者:

      E-mail:whzhuang@scut.edu.cn

    • 中圖分類號: TQ334.1

    Preparation of polyurethanes with broad temperature range and high damping factor

    More Information
    • 摘要: 為拓寬材料的阻尼溫域,增大聚氨酯應用范圍,基于聚氨酯的結構可設計性,引入含有甲苯-2,4-二異氰酸酯(TDI)和聚乙二醇單甲醚(MPEG)的預聚體制備帶長支鏈的聚氨酯。長支鏈一端固定一端活動的特點賦予其特有的運動與松弛。甲苯-2,4-二異氰酸酯的存在不僅延長了支鏈長度,增大了支鏈與分子間的纏結程度,還使支鏈含有強極性的吸電子的異氰酸酯基和氨基甲酸酯基,使得支鏈與主鏈間具有較強的氫鍵作用。因此,從氫鍵及微相分離角度來分別探究聚氨酯阻尼的影響因素。結果表明,長支鏈占比增加,儲能模量比值達到268.28,聚氨酯的微相分離程度降低,氫鍵作用增強,在氫鍵作用和微相分離程度降低的雙重作用下聚氨酯的有效阻尼(阻尼因子大于0.3)溫域超過150 ℃(?50~100 ℃),極大改善了聚氨酯彈性體的阻尼性能。此外,加入支鏈后聚氨酯具有一定的自修復性,對延長聚氨酯的使用壽命有較大意義。

       

    • 圖  1  長支鏈聚氨酯合成流程

      Figure  1.  Procedure of polyurethanes with long branched chains

      圖  2  不同支鏈占比的聚氨酯的阻尼?溫度曲線

      Figure  2.  Curves of damping temperature of polyurethanes with different proportion of branched chains

      圖  3  不同支鏈占比的聚氨酯的阻尼?頻率曲線

      Figure  3.  Curves of damping frequency of polyurethanes with different proportion of branched chains

      圖  4  不同支鏈占比聚氨酯體系的FTIR曲線. (a)亞氨基;(b)羰基

      Figure  4.  FTIR curve of polyurethanes with different proportion of branched chains: (a) N-H; (b) C=O

      圖  5  聚氨酯的原子力顯微圖. (a)無支鏈;(b)支鏈占比33%

      Figure  5.  AFM image of polyurethanes: (a) no branched chains; (b) 33% branched chain

      圖  6  聚氨酯原子力顯微鏡三維高度圖. (a)無支鏈;(b)支鏈占比33%

      Figure  6.  AFM three-dimensional height map of polyurethanes: (a) no branched chains; (b) 33% branched chain

      圖  7  不同支鏈占比聚氨酯的自修復率變化曲線

      Figure  7.  Curve of self-repair rate of polyurethanes with different proportion of branched chains

      表  1  亞氨基氫鍵化與非氫鍵化分峰數值

      Table  1.   Peak values of free N-H bond and ordered N-H bond

      Wb/%H-bond peak integralNon H-bond
      peak integral
      Peak ratio of H-bond and
      non-H-bond
      331.55841.76200.8844
      502.42902.72840.8903
      603.58873.45881.0376
      下載: 導出CSV

      表  2  甲苯-2,4-二異氰酸酯型聚氨酯的儲能模量

      Table  2.   Store modulus of polyurethanes based on TDI

      Wb/%E'?30 °C/MPaE'70 °C/MPaE'?30 °C/E'70 °C
      0265.683.0886.26
      3397.771.0989.70
      5052.980.5596.33
      6067.070.25268.28
      下載: 導出CSV
      中文字幕在线观看
    • [1] Xiao Y L, Wang J B, Yang Z P, et al. Finite element simulation and optimization design of the parameters of vibration reduction for damped wheels. Noise Vib Control, 2018, 38(3): 83 doi: 10.3969/j.issn.1006-1355.2018.03.015

      肖玉蘭, 王俊彪, 楊志鵬, 等. 阻尼車輪減振參量的有限元仿真與優化設計. 噪聲與振動控制, 2018, 38(3):83 doi: 10.3969/j.issn.1006-1355.2018.03.015
      [2] Li B, Yang L B, Zhang B S, et al. Preparation of damping materials and its engineer applications on bridge bearing. World Rubber Ind, 2017, 44(3): 40 doi: 10.3969/j.issn.1671-8232.2017.03.015

      李斌, 楊麗博, 張保生, 等. 高分子阻尼材料的制備及其在橋梁支座上的應用. 世界橡膠工業, 2017, 44(3):40 doi: 10.3969/j.issn.1671-8232.2017.03.015
      [3] Sun Y F, Gong J, Liu Y, et al. Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts. J Appl Polym Sci, 2019, 136(5): 47027 doi: 10.1002/app.47027
      [4] Niu W, Tang D M. Study on damping characteristics and microscopic mechanism of polymer modified mortar repair material. Constr Technol, 2017, 46(15): 85

      牛文, 唐德密. 聚合物改性砂漿修補材料阻尼特性及微觀機理研究. 施工技術, 2017, 46(15):85
      [5] Shi M X, Zheng J L, Huang Z X, et al. Synthesis of polyurethane pre-polymers and damping property of polyurethane/epoxy composites. Adv Sci Lett, 2011, 4(3): 740 doi: 10.1166/asl.2011.1597
      [6] Kumar D, Kumar N, Jindal P. Effect of MWCNTs on damping behavior of polyurethane based nanocomposites. Mater Today Proc, 2018, 5(2): 5636 doi: 10.1016/j.matpr.2017.12.156
      [7] Li H M, Yang Y L, Li Z P, et al. Preparation of high damping polyurethane with wide temperature range based on network structure designing. Polym Mater Sci Eng, 2017, 33(6): 146

      李翰模, 楊一林, 李志鵬, 等. 基于網絡結構設計制備寬溫域高阻尼聚氨酯彈性體. 高分子材料科學與工程, 2017, 33(6):146
      [8] Yan X Q, Yin Z H, Luo S, et al. Research progress of polyurethane damping materials. China Adhes, 2018, 27(4): 46

      閆曉琦, 尹朝輝, 羅順, 等. 聚氨酯阻尼材料的研究進展. 中國膠粘劑, 2018, 27(4):46
      [9] Lee K S, Choi J I, Kim S K, et al. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates. Constr Build Mater, 2017, 145: 68 doi: 10.1016/j.conbuildmat.2017.03.233
      [10] Kim J M, Kim D H, Kim J, et al. Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromol Res, 2017, 25(2): 190 doi: 10.1007/s13233-017-5017-9
      [11] Yu W W, Du M, Ye W J, et al. Relaxation behavior of layered double hydroxides filled dangling chain-based polyurethane/polymethyl methacrylate nanocomposites. Polymer, 2014, 55(10): 2455 doi: 10.1016/j.polymer.2014.03.039
      [12] Zhou R, Gao W Q, Xia L C, et al. The study of damping property and mechanism of thermoplastic polyurethane/phenolic resin through a combined experiment and molecular dynamics simulation. J Mater Sci, 2018, 53(12): 9350 doi: 10.1007/s10853-018-2218-3
      [13] Kausar A. Interpenetrating polymer network and nanocomposite IPN of polyurethane/ epoxy: a review on fundamentals and advancements. Polym-Plast Technol Mater, 2019, 58(7): 691 doi: 10.1080/25740881.2018.1563114
      [14] Yu W W, Zhang D Z, Du M, et al. Role of graded length side chains up to 18 carbons in length on the damping behavior of polyurethane/epoxy interpenetrating polymer networks. Eur Polym J, 2013, 49(6): 1731 doi: 10.1016/j.eurpolymj.2013.03.024
      [15] Zhu Y D, He G W, Li H F, et al. Modification and damping performance of the polyurethane elastomers. J Funct Mater, 2014, 45(21): 21006 doi: 10.3969/j.issn.1001-9731.2014.21.002

      朱耀東, 賀國文, 李衡峰, 等. 聚氨酯彈性體的改性及阻尼性能. 功能材料, 2014, 45(21):21006 doi: 10.3969/j.issn.1001-9731.2014.21.002
      [16] Yu W W, Du M, Zhang D Z, et al. Influence of dangling chains on molecular dynamics of polyurethanes. Macromolecules, 2013, 46(18): 7341 doi: 10.1021/ma401260d
      [17] Lee H S, Wang Y K, Hsu S L. Spectroscopic analysis of phase separation behavior of model polyurethanes. Macromolecules, 1987, 20(9): 2089 doi: 10.1021/ma00175a008
      [18] Xu K M, Zhang F S, Zhang X L, et al. Molecular insights into hydrogen bonds in polyurethane/ hindered phenol hybrids: evolution and relationship with damping properties. J Mater Chem A, 2014, 2(22): 8545 doi: 10.1039/C4TA00476K
      [19] Zhou J H, Li H M, Lu X. Damping elastomer with broad temperature range based on irregular networks containing hyperbranched polyester and dangling chains. Polym Adv Technol, 2018, 29(8): 2308 doi: 10.1002/pat.4342
      [20] Ren L F, Chen T, Qiang T T, et al. Study on the preparation and properties of HBPU/PU blend films. J Shaanxi Univ Sci Technol Nat Sci Ed, 2016, 34(1): 11

      任龍芳, 陳婷, 強濤濤, 等. 超支化聚氨酯/聚氨酯共混膜的制備及其性能研究. 陜西科技大學學報:自然科學版, 2016, 34(1):11
      [21] Castagna A M, Wang W Q, Winey K I, et al. Structure and dynamics of zinc-neutralized sulfonated polystyrene ionomers. Macromolecules, 2011, 44(8): 2791 doi: 10.1021/ma2001614
      [22] Yao K J. Study on surface performance of modified montmorillonite/polyurethane composites. Polyurethane Ind, 2018, 33(3): 10 doi: 10.3969/j.issn.1005-1902.2018.03.003

      姚克儉. 改性蒙脫土/聚氨酯復合材料表面性能研究. 聚氨酯工業, 2018, 33(3):10 doi: 10.3969/j.issn.1005-1902.2018.03.003
      [23] Castagna A M, Pangon A, Choi T, et al. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromolecules, 2012, 45(20): 8438 doi: 10.1021/ma3016568
      [24] Tian D D, Lv Z P, Wu Y K, et al. Preparation and properties of polyurethane/glycine-barium chloride semiorganic crystal composites. Polym Mater Sci Eng, 2016, 32(7): 136

      田丹丹, 呂志平, 吳怡康, 等. 聚氨酯/甘氨酸-氯化鋇半有機晶體復合材料的制備與性能. 高分子材料科學與工程, 2016, 32(7):136
    • 加載中
    圖(7) / 表(2)
    計量
    • 文章訪問數:  1508
    • HTML全文瀏覽量:  1264
    • PDF下載量:  91
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-04-12
    • 刊出日期:  2020-03-01

    目錄

      /

      返回文章
      返回