• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于自適應滑模的多螺旋槳浮空器容錯控制

    梁寬寬 陳麗 段登平

    梁寬寬, 陳麗, 段登平. 基于自適應滑模的多螺旋槳浮空器容錯控制[J]. 工程科學學報, 2020, 42(3): 372-380. doi: 10.13374/j.issn2095-9389.2019.04.25.002
    引用本文: 梁寬寬, 陳麗, 段登平. 基于自適應滑模的多螺旋槳浮空器容錯控制[J]. 工程科學學報, 2020, 42(3): 372-380. doi: 10.13374/j.issn2095-9389.2019.04.25.002
    LIANG Kuan-kuan, CHEN Li, DUAN Deng-ping. Fault-tolerant control for a multi-propeller airship based on adaptive sliding mode method[J]. Chinese Journal of Engineering, 2020, 42(3): 372-380. doi: 10.13374/j.issn2095-9389.2019.04.25.002
    Citation: LIANG Kuan-kuan, CHEN Li, DUAN Deng-ping. Fault-tolerant control for a multi-propeller airship based on adaptive sliding mode method[J]. Chinese Journal of Engineering, 2020, 42(3): 372-380. doi: 10.13374/j.issn2095-9389.2019.04.25.002

    基于自適應滑模的多螺旋槳浮空器容錯控制

    doi: 10.13374/j.issn2095-9389.2019.04.25.002
    基金項目: 國家自然科學基金資助項目(61733017);上海浦江人才計劃資助項目(18PJD018);機器人國家重點實驗室基金資助項目(2018O13)
    詳細信息
      通訊作者:

      E-mail:cl200432@tom.com

    • 中圖分類號: TG142.71

    Fault-tolerant control for a multi-propeller airship based on adaptive sliding mode method

    More Information
    • 摘要: 針對多螺旋槳浮空器執行機構易發生故障的容錯控制問題,同時考慮系統所受到的未知外部擾動和螺旋槳輸入幅值的飽和約束,提出一種自適應滑模容錯控制方法。建立浮空器的四自由度運動模型,系統分析矢量螺旋槳的故障類型,分為輸出力的大小故障和矢量轉角故障,得到浮空器執行機構的故障模型。基于自適應和滑模控制理論,由跟蹤目標與系統當前狀態偏差設計積分滑模面。針對未知外部擾動和執行機構偏移故障,設計相應的自適應律進行處理;針對螺旋槳輸入飽和約束,應用Sigmoid函數設計跟蹤軌跡進行處理。由此設計一種自適應滑模容錯控制策略,利用Lyapunov穩定性理論證明了閉環系統的全局漸近穩定性能。以上海交通大學的多螺旋槳浮空器為模型,仿真驗證了故障容錯控制方法的有效性和魯棒性。

       

    • 圖  1  多螺旋槳浮空器與坐標系. (a)浮空器實物圖;(b)浮空器坐標系

      Figure  1.  Multi-propeller airship and coordinate system: (a) physical picture of airship; (b) coordinate system

      圖  2  螺旋槳矢量推力分解示意圖

      Figure  2.  Orthogonal decomposition diagram of vector propeller’s force

      圖  3  浮空器三維軌跡跟蹤

      Figure  3.  Three-dimensional trajectory tracking of airship

      圖  4  浮空器水平面軌跡跟蹤情況對比圖

      Figure  4.  Horizontal trajectory tracking compare of airship

      圖  5  軌跡跟蹤狀態響應對比圖. (a)高度方向跟蹤響應;(b)偏航角跟蹤響應

      Figure  5.  Comparison of the trajectory tracking response: (a) hight tracking response; (b) yaw angle tracking response

      圖  6  自適應滑模容錯控制螺旋槳響應. (a~d)螺旋槳推力變化;(e~h)螺旋槳轉角變化

      Figure  6.  Response of propellers under the ASMFTC: (a?d) propellers’ forces change; (e?h) propellers’ angles change

      圖  7  浮空器三維軌跡跟蹤

      Figure  7.  Three-dimensional trajectory tracking of airship

      圖  8  浮空器水平面軌跡比較

      Figure  8.  Horizontal trajectory tracking compare of airship

      圖  9  軌跡跟蹤狀態響應比較. (a)高度方向跟蹤響應;(b)偏航角跟蹤響應

      Figure  9.  Comparison of the trajectory tracking response: (a) hight tracking response; (b) yaw angle tracking response

      圖  10  自適應滑模容錯控制螺旋槳響應. (a~d)螺旋槳推力變化;(e~h)螺旋槳轉角變化

      Figure  10.  Response of propellers under the ASMFTC: (a?d) propellers’ forces change; (e?h) propellers’ angles change

      表  1  矢量螺旋槳故障模型

      Table  1.   Fault model of the vectored propeller

      Fault formsFault types${\varepsilon _i}\left( {i = 1 \ldots 4} \right)$${u_{{\rm{a}}i}}\left( {i = 1 \ldots 4} \right)$
      The faults of ${{{f}}_i}$Loss of effectiveness$0 < {\varepsilon _i} < 1$${u_{{\rm{a}}i}} = 0$
      Offset fault${\varepsilon _i} = 1$${u_{{\rm{a}}i}} \ne 0$
      Stuck fault${\varepsilon _i} = 0$${u_{{\rm{a}}i}} \ne 0$
      Failure fault${\varepsilon _i} = 0$${u_{{\rm{a}}i}} = 0$
      The faults of $\,{\mu _i}$Stuck fault${\varepsilon _i} = 1$${u_{{\rm{a}}i}} \ne 0$
      Offset fault${\varepsilon _i} = 1$${u_{{\rm{a}}i}} \ne 0$
      下載: 導出CSV

      表  2  多螺旋槳浮空器模型參數

      Table  2.   Parameters of multi-propeller airship

      ParametersValuesParametersValues
      Mass/kg72Added mass,${m_{11}}$/kg10.8147
      Volume/m370Added mass,${m_{22}}$/kg10.8147
      Area/m216.9850Added mass,${m_{33}}$/kg38.9521
      Installation radius of propeller,${R_{\rm{p}}}$/m2.81Added mass,${m_{66}}$/kg0.0
      Barycentric coordinates,$\left( {{x_{\rm{G}}},{y_{\rm{G}}},{z_{\rm{G}}}} \right)/{\rm{m}}$(0,0,2)Moment of inertia,${I_x}$/(kg?m2)409.4260
      Maximum thrust of propeller,${F_{\max }}$/N150Moment of inertia,${I_y}$/(kg?m2)409.4260
      Rotation angle of propeller,$\mu /{\rm{rad}}$$ - {\text{π} } \sim {\text{π} }$Moment of inertia,${I_z}$/(kg?m2)34.5941
      下載: 導出CSV
      中文字幕在线观看
    • [1] Nayler A. Airship activity and development world-wide-2003//AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech. Denver, 2003: AIAA 2003-6727
      [2] Mueller J, Paluszek M, Zhao Y. Development of an aerodynamic model and control law design for a high altitude airship//AIAA 3rd" Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Chicago, 2004: AIAA 2004-6479
      [3] Yang Y N. Dynamics Modeling and Flight Control for A Stratospheric Airship[Dissertation]. Changsha: National University of Defense Technology, 2013

      楊躍能.平流層飛艇動力學建模與控制方法研究[學位論文]. 長沙: 國防科學技術大學, 2013
      [4] Zhang J S, Yang X X. Trajectory control method of stratospheric airship based on the sliding mode control and prediction in wind field//LIDAR Imaging Detection and Target Recognition 2017. Changchun, 2017: 1060514
      [5] Zheng Z W, Huo W, Wu Z. Trajectory tracking control for underactuated stratospheric airship. Adv Space Res, 2012, 50(7): 906 doi: 10.1016/j.asr.2012.06.020
      [6] Chen L, Zhang H, Duan D P. Control system design of a multivectored thrust stratospheric airship. Proc Inst Mech Eng Part G J Aerosp Eng, 2014, 228(11): 2045 doi: 10.1177/0954410013513568
      [7] Yang X X. Prediction of thermal behavior and trajectory of stratospheric airships during ascent based on simulation. Adv Space Res, 2016, 57(11): 2326 doi: 10.1016/j.asr.2016.02.030
      [8] Han D, Wang X L, Chen L, et al. Command-filtered backstepping control for a multi-vectored thrust stratospheric airship. Trans Inst Meas Contr, 2016, 38(1): 93 doi: 10.1177/0142331214568237
      [9] Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Contr, 2008, 32(2): 229 doi: 10.1016/j.arcontrol.2008.03.008
      [10] Liang Z X, Zheng Z W, Zhu M, et al. Adaptive fault tolerant attitude control of a stratospheric airship with input saturation//2017 13th IEEE International Conference on Control & Automation (ICCA). Ohrid, 2017: 443
      [11] Zhou P F, Wang Y Y, Duan D P. Adaptive fault-tolerant directional control of an autonomous airship against actuator fault//2016 35th Chinese Control Conference (CCC). Chengdu, 2016: 10538
      [12] Scott, R. W. Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems [Dissertation]. Davis: University of California, 2002
      [13] Xiao B, Hu Q L, Zhang Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans Contr Syst Technol, 2012, 20(6): 1605 doi: 10.1109/TCST.2011.2169796
      [14] Wang B, Zhang Y M. An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE TransInd Electron, 2018, 65(5): 4227 doi: 10.1109/TIE.2017.2772153
      [15] Shen Q, Yue C, Goh C H, et al. Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans Ind Electron, 2019, 66(5): 3763 doi: 10.1109/TIE.2018.2854602
      [16] Zhang Y M, Suresh V S, Jiang B, et al. Reconfigurable control allocation against aircraft control effector failures//2007 IEEE International Conference on Control Applications. Singapore, 2007: 1197
      [17] Galeazzi R, Blanke M, Poulsen N K. Parametric Resonance in Dynamical Systems. New York: Springer, 2012: 17
      [18] Shen Q, Wang D M, Zhu S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation. IEEE Trans Aero Electron Sys, 2015, 51(3): 2390 doi: 10.1109/TAES.2015.130725
      [19] Bennouna O, Langlois N. Development of a fault tolerant control for aircraft electromechanical actuators//2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. Bologna, 2012: 1
      [20] Costic B T, Dawson D M, De Queiroz M S, et al. Quaternion-based adaptive attitude tracking controller without velocity measurements. J Guid Contr Dyn, 2001, 24(6): 1214 doi: 10.2514/2.4837
      [21] Benjovengo P F, de Paiva E C, Bueno S S, et al. Sliding mode control approaches for an autonomous unmanned airship//18th AIAA Lighter-than-air systems Technology Conference. Seattle, 2009: 2869
      [22] Stepanenko Y, Cao Y, Su C Y. Variable structure control of robotic manipulator with PID sliding surfaces. Int J Robust Nonlinear Contr, 1998, 8(1): 79 doi: 10.1002/(SICI)1099-1239(199801)8:1<79::AID-RNC313>3.0.CO;2-V
      [23] Aguiar A P, Hespanha J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans Automat Contr, 2007, 52(8): 1362 doi: 10.1109/TAC.2007.902731
    • 加載中
    圖(10) / 表(2)
    計量
    • 文章訪問數:  1457
    • HTML全文瀏覽量:  853
    • PDF下載量:  44
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2019-04-25
    • 刊出日期:  2020-03-01

    目錄

      /

      返回文章
      返回