• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    鋼包工作襯用耐火材料的研究現狀及最新進展

    王恩會 陳俊紅 侯新梅

    王恩會, 陳俊紅, 侯新梅. 鋼包工作襯用耐火材料的研究現狀及最新進展[J]. 工程科學學報, 2019, 41(6): 695-708. doi: 10.13374/j.issn2095-9389.2019.06.001
    引用本文: 王恩會, 陳俊紅, 侯新梅. 鋼包工作襯用耐火材料的研究現狀及最新進展[J]. 工程科學學報, 2019, 41(6): 695-708. doi: 10.13374/j.issn2095-9389.2019.06.001
    WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Current research and latest developments on refractories used as ladle linings[J]. Chinese Journal of Engineering, 2019, 41(6): 695-708. doi: 10.13374/j.issn2095-9389.2019.06.001
    Citation: WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Current research and latest developments on refractories used as ladle linings[J]. Chinese Journal of Engineering, 2019, 41(6): 695-708. doi: 10.13374/j.issn2095-9389.2019.06.001

    鋼包工作襯用耐火材料的研究現狀及最新進展

    doi: 10.13374/j.issn2095-9389.2019.06.001
    基金項目: 

    國家自然科學基金資助項目 51874027

    國家自然科學基金資助項目 U1460201

    中央高校基本科研業務費資助項目 FRF-TP-15-006C1

    國家優秀青年基金資助項目 FRF-TP-15-006C1

    詳細信息
      通訊作者:

      侯新梅, E-mail: houxinmei01@126.com

    • 中圖分類號: TG142.71

    Current research and latest developments on refractories used as ladle linings

    More Information
    • 摘要: 綜述了近年來鋼包工作襯用耐火材料的研究現狀及最新進展, 尤其對傳統鋼包工作襯用耐火材料的應用背景及存在問題進行了分析和匯總.在此基礎上, 進一步提出了適用于超低氧鋼(或潔凈鋼)冶煉用耐火材料的研發方向, 即通過耐火原料組分選擇和結構匹配設計, 實現對耐火材料性能的精確控制.新型鋼包工作襯用耐火材料需兼顧優異熱機械性能的同時, 還應具備鋼水凈化的功能.

       

    • 圖  1  LF精煉過程鋼中夾雜物組成變化[3]. (a) 精煉開始; (b) 精煉26 min; (c) 精煉147 min[3]

      Figure  1.  Change in inclusion composition in the LF refining process[3]: (a) onset of refining, (b) refining for 26 min; (c) refining for 147 min[3]

      圖  2  LF精煉后期典型夾雜物的掃描電鏡-能譜線掃描照片[3]

      Figure  2.  SEM-EDS scans of typical inclusions found at later stages of the LF refining process[3]

      圖  3  1200 (a) 和1500℃ (b) 反應3 h添加Al的試樣電鏡圖[29]

      Figure  3.  Back-scattered electron images of Al-added samples after treatment for 3 h at 1200 (a) and 1500℃ (b)[29]

      圖  4  1200 (a) 和1500℃ (b) 反應3 h添加Si的試樣電鏡圖[29]

      Figure  4.  Back-scattered electron images of Si-added samples after treatment for 3 h at 1200 (a) and 1500℃ (b)[29]

      圖  5  添加/不添加3%質量分數抗氧化劑的鎂碳磚在1300℃氧化6 h后的氧化形貌[30]

      Figure  5.  Oxidized areas of Mg O-C specimens with/without 3%mass fraction of antioxidant after 6 h of oxidation at 1300℃[30]

      圖  6  1900℃合成的Al4SiC4晶體的掃描電鏡照片[35]

      Figure  6.  SEM images of Al4SiC4crystals synthesized at 1900℃[35]

      圖  7  1450℃高溫抗折試驗后試樣斷口的顯微形貌[52]. (a) 無ZrO2添加試樣; (b) 9%質量分數ZrO2微粉添加試樣[52]

      Figure  7.  Fracture micrographs of specimens after rupture testing at 1450℃[52]: (a) sample without ZrO2addition; (b) sample with 9%ZrO2addi-tion[52]

      圖  8  CM2A8抗渣侵蝕后的掃描電鏡照片[74]

      Figure  8.  SEM images of the crucible after slag resistance testing[74]

      中文字幕在线观看
    • [1] Wang X H, Chen B, Jiang M, et al. Effect of slag-metal reaction on formation of non-metallic inclusions of lower melting temperature in high strength alloyed structural steel. Iron Steel, 2008, 43(12): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200812007.htm

      王新華, 陳斌, 姜敏, 等. 渣-鋼反應對高強度合金結構鋼中生成較低熔點非金屬夾雜物的影響. 鋼鐵, 2008, 43(12): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200812007.htm
      [2] Xu K D, Xiao L J. Deoxidation andinclusion control in special steel refining. Iron Steel, 2012, 47(10): 1

      徐匡迪, 肖麗俊. 特殊鋼精煉中的脫氧及夾雜物控制. 鋼鐵, 2012, 47(10): 1
      [3] Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels. Steelmaking, 2015, 31(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201506001.htm

      王新華, 姜敏, 于會香, 等. 超低氧特殊鋼中非金屬夾雜物研究. 煉鋼, 2015, 31(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201506001.htm
      [4] Li J Z, Jiang M, He X F, et al. Investigation on nonmetallic inclusions in ultra-low-oxygen special steels. Metall Mater Trans B, 2016, 47(4): 2386 doi: 10.1007/s11663-016-0687-9
      [5] Yang H L, He P, Zhai Y C. Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel. Spec Steel, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005

      楊虎林, 何平, 翟玉春. 高品質軸承鋼超低氧含量和非金屬夾雜物控制的進展. 特殊鋼, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005
      [6] Park J S, Park J H. Effect of slag composition on the concentration of Al2O3 in the inclusions in Si-Mn-killed steel. Metall Mater Trans B, 2014, 45(3): 953 doi: 10.1007/s11663-013-9998-2
      [7] Liu J Z. Experimental Study on the Effect of Refractory on Oxygen Content in Molten Steel[Dissertation]. Shenyang: Northeastern University, 2011

      劉家占. 耐火材料對鋼中氧含量影響的實驗研究[學位論文]. 沈陽: 東北大學, 2011
      [8] Guo J, Fang K M, Guo H J, et al. Determination of three-dimensional morphology and inner structure of second-phase inclusions in metals by non-aqueous solution electrolytic and room temperature organic methods. Metals, 2018, 8(1): 68 doi: 10.3390/met8010068
      [9] Zhang X W, Zhang L F, Yang W, et al. Comparison of 2D and 3D morphology of non-metallic inclusions in steel using different methods. Metall Res Technol, 2017, 114(1): 113 doi: 10.1051/metal/2016056
      [10] Jiang G L, Li J S, Sun K M, et al. Study on macro inclusions in 30CrMo gas cylinder steel. Steelmaking, 2009, 25(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ200904018.htm

      姜桂連, 李京社, 孫開明, 等. 30CrMo氣瓶鋼中大型夾雜物的研究. 煉鋼, 2009, 25(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ200904018.htm
      [11] Janis D, Inoue A, Karasev P G, et al. Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys. Adv Mater Sci Eng, 2014, 2014: 210486 http://www.oalib.com/paper/3066102
      [12] Li J G, Zeng Y N, Wang S H, et al. Research on the non-metallic inclusion in 20CrMnTi steel during the process of refining and casting. Iron Steel Van Tit, 2010, 31(1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201001011.htm

      李俊國, 曾亞南, 王樹華, 等. 20CrMnTi冶煉過程中夾雜物行為研究. 鋼鐵釩鈦, 2010, 31(1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201001011.htm
      [13] Stampa E, Cipparrone M. Detection of harmful inclusions in steels for tire cord. Wire J Int, 1987, 20(3): 44 http://www.researchgate.net/publication/294523280_DETECTION_OF_HARMFUL_INCLUSIONS_IN_STEELS_FOR_TIRE_CORD
      [14] Sawai T, Wakoh M, Ueshima Y, et al. Analysis of oxide dispersion during solidification in Ti, Zr-deoxidized steels. ISIJ Int, 1992, 32(1): 169 doi: 10.2355/isijinternational.32.169
      [15] Yaguchi H, Tsuchida T, Shindou Y, et al. Non-lead-added free machining steel by sulfide inclusion morphology modification. Kobe Res Develop Jpn, 2002, 52(3): 62 http://www.researchgate.net/publication/289302749_Non-lead-added_free_machining_steel_by_sulfide_inclusion_morphology_modification
      [16] Matsui N, Watari K. Wear reduction of carbide tools observed in cutting Ca-added steels for machine structural use. ISIJ Int, 2006, 46(11): 1720 doi: 10.2355/isijinternational.46.1720
      [17] Runner D L, Maeda S, Gale J P, et al. Start-up of tire cord though USS/KOBE's billet caster//1998 Steelmaking Conference Proceeding. Toronto, 1998: 129
      [18] Yang X W. General understanding and deep understanding of bearing steel. Bearing, 2012(9): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201209020.htm

      楊曉蔚. 對軸承鋼的一般認識和深入認識. 軸承, 2012(9): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201209020.htm
      [19] Chan C F, Ko Y C. Effect of CaO content on the hot strength of alumina-spine castables in the temperature range of 1000℃ to 1500℃. J Am Ceram Soc, 1998, 81(11): 2957 http://www.ams.org/mathscinet-getitem?mr=2349
      [20] Shen S Y. Study on erosion mechanism of grade Ⅰ alumina bricks as ladle lining in Taigang. Bull Chin Ceram Soc, 1992(4): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT199204010.htm

      沈上越. 太鋼一等高鋁磚用于盛鋼桶襯磚的侵蝕機理研究. 硅酸鹽通報, 1992(4): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT199204010.htm
      [21] Li N D, Xie Y C, Yan S X, et al. Effect of additives on the structure and properties of high alumina bricks. Refractories, 1999, 33(3): 158 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL903.011.htm

      李乃動, 謝宜才, 燕宿祥, 等. 添加物對高鋁磚結構和性能的影響. 耐火材料, 1999, 33(3): 158 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL903.011.htm
      [22] Resende W S, Stoll R M, Justus S M, et al. Key features of alumina/magnesia/graphite refractories for steel ladle lining. J Eur Ceram Soc, 2000, 20(9): 1419 doi: 10.1016/S0955-2219(00)00004-2
      [23] Akkurt S, Leigh H D. Corrosion of MgO-C ladle refractories. Am Ceram Soc Bull, 2003, 82(5): 32 http://www.researchgate.net/publication/292543930_Corrosion_of_MgO-C_ladle_refractories
      [24] Li S F. Aluminum-magnesium carbon brick and its application on ladle. Steelmaking, 1990(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ199002002.htm

      李遂方. 鋁鎂碳磚及其在鋼包上的應用. 煉鋼, 1990(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ199002002.htm
      [25] Yao H B, Yao S Z, Luo C, et al. Current research and developing trend of MgO-C bricks. Chin J Eng, 2018, 40(3): 253 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201803001.htm

      姚華柏, 姚蘇哲, 駱昶, 等. 鎂碳磚的研究現狀與發展趨勢. 工程科學學報, 2018, 40(3): 253 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201803001.htm
      [26] Lee W E, Zhang S. Melt corrosion of oxide and oxide-carbon refractories. Int Mater Rev, 1999, 44(3): 77 doi: 10.1179/095066099101528234
      [27] Zhu B Q, Zhang W J. Research of low-carbon magnesia carbon bricks: present situation and development. J Wuhan Univ Sci Technol Nat Sci Ed, 2008, 31(3): 233 doi: 10.3969/j.issn.1674-3644.2008.03.003

      朱伯銓, 張文杰. 低碳鎂碳磚的研究現狀與發展. 武漢科技大學學報(自然科學版), 2008, 31(3): 233 doi: 10.3969/j.issn.1674-3644.2008.03.003
      [28] Shi Y W, Jia X J, Wei P C. Development and applications of low-carbon magnesia carbon bricks. Sci Technol Baotou Steel, 2012, 38(1): 17 doi: 10.3969/j.issn.1009-5438.2012.01.007

      石永午, 賈新軍, 魏鵬程. 低碳鎂碳磚的研制和應用. 包鋼科技, 2012, 38(1): 17 doi: 10.3969/j.issn.1009-5438.2012.01.007
      [29] Zhang S, Marriott N J, Lee W E. Thermochemistry and microstructures of MgO-C refractories containing various antioxidants. J Eur Ceram Soc, 2001, 21(8): 1037 doi: 10.1016/S0955-2219(00)00308-3
      [30] Gokce A S, Gurcan C, Ozgen S, et al. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks. Ceram Int, 2008, 34(2): 323 doi: 10.1016/j.ceramint.2006.10.004
      [31] He Z Y, Peng X Y, Li L, et al. Effect of ZrB2 on oxidation resistance of low-carbon MgO-C materials. Refactories, 2006, 40(4): 280 doi: 10.3969/j.issn.1001-1935.2006.04.010

      賀智勇, 彭小艷, 李林, 等. ZrB2對低碳鎂碳材料抗氧化性能的影響. 耐火材料, 2006, 40(4): 280 doi: 10.3969/j.issn.1001-1935.2006.04.010
      [32] Xu N, Li Z J, Wu F, et al. Research on mechanism of improving of slag corrosion-resistance of MgO-C brick with TiN. Bull Chin Ceram Soc, 2008, 27(5): 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200805033.htm

      徐娜, 李志堅, 吳鋒, 等. TiN提高鎂碳磚抗渣侵蝕機理的研究. 硅酸鹽通報, 2008, 27(5): 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200805033.htm
      [33] Yamaguchi A, Zhang S W. Synthesis and some properties of Al4 SiC4. J Ceram Soc Jpn, 1995, 103(1193): 20 doi: 10.2109/jcersj.103.20
      [34] Xing X M, Li B, Chen J H, et al. Formation mechanism of large size plate-like Al4 SiC4 grains by a carbothermal reduction method. CrystEngComm, 2018, 20: 1399 doi: 10.1039/C7CE02193C
      [35] Xing X M, Chen J H, Bei G P, et al. Synthesis of Al4 SiC4 powders via carbothermic reduction: reaction and grain growth mechanisms. J Adv Ceram, 2017, 6(4): 351 doi: 10.1007/s40145-017-0247-z
      [36] Wang Z F, Zhang Y C, Li R C, et al. Experimental study on anti-oxidation of graphite crucible impregnation. Non-Metallic Mines, 2004, 27(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200403001.htm

      王志發, 張永春, 李如春, 等. 石墨坩堝浸漬法抗氧化試驗研究. 非金屬礦, 2004, 27(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200403001.htm
      [37] Ouyang D G. Present status and development of anti-oxidation coatings for carbon-containing refractory. Ind Heat, 2005, 34(4): 51 doi: 10.3969/j.issn.1002-1639.2005.04.015

      歐陽德剛. 含碳耐火材料抗氧化涂料的現狀與發展趨勢. 工業加熱, 2005, 34(4): 51 doi: 10.3969/j.issn.1002-1639.2005.04.015
      [38] Tamura T, Tsynemi O, Shigeyuki T, Nano-tech refractories-1: the development of the nano structural matrix//Proceedings of Unified International Technical Conference on Refractories. Osaka, 2003: 517
      [39] Zhu T B, Li Y W, Sang S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories. Ceram Int, 2014, 40(3): 4333 doi: 10.1016/j.ceramint.2013.08.101
      [40] Shi X Q, Li L, Peng X Y. Effects of nanometer carbon black on mechanical properties and thermal shock resistance of MgO-C bricks. China Metall, 2015, 25(6): 17 doi: 10.3969/j.issn.1007-0958.2015.06.010

      史曉強, 李林, 彭小艷. 納米炭黑對鎂碳磚力學性能和熱震性的影響. 中國冶金, 2015, 25(6): 17 doi: 10.3969/j.issn.1007-0958.2015.06.010
      [41] Yan Z G, Chen W, Yu J K. Synthesis of B4C-C composite powder and its application in low carbon MgO-C bricks. Chin J Process Eng, 2009, 9(5): 1011 doi: 10.3321/j.issn:1009-606X.2009.05.030

      顏正國, 陳偉, 于景坤. B4C-C復合粉體的合成及其在低碳鎂碳磚中的應用. 過程工程學報, 2009, 9(5): 1011 doi: 10.3321/j.issn:1009-606X.2009.05.030
      [42] Hua X J, Zhu B Q, Li X D, et al. TiC-C compound powder: synthesis and its influence on oxidation resistance of low-carbon MgO-C bricks. J Wuhan Univ Sci Technol Nat Sci Ed, 2007, 30(2): 145 doi: 10.3969/j.issn.1674-3644.2007.02.010

      華旭軍, 朱伯銓, 李雪冬, 等. TiC-C復合粉體的制備及其對低碳鎂碳磚抗氧化性能的影響. 武漢科技大學學報(自然科學版), 2007, 30(2): 145 doi: 10.3969/j.issn.1674-3644.2007.02.010
      [43] Li L, Tang G S, He Z Y, et al. Influences of black carbon addition on mechanical performance of low-carbon MgO-C composite. J Iron Steel Res Int, 2010, 17(12): 75 doi: 10.1016/S1006-706X(10)60201-4
      [44] Luo M, Li Y W, Jin S L, et al. Research and outlook of carbon nanotubes reinforced ceramic matrix composites. Mater Rev, 2010, 24(Spec): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2010S1050.htm

      羅明, 李亞偉, 金勝利, 等. 碳納米管增強陶瓷基復合材料的研究與展望. 材料導報, 2010, 24(專輯): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2010S1050.htm
      [45] Aneziris C G, Hubalkova J, Barabas R. Microstructure evaluation of MgO-C refractories with TiO2-and Al-additions. J Eur Ceram Soc, 2007, 27(1): 73 doi: 10.1016/j.jeurceramsoc.2006.03.001
      [46] Cao Y P, Yan W, Li N. Effect of Si-SiC composite powder addition on properties of low-carbon MgO-C refractories. Refractories, 2016, 50(3): 170 doi: 10.3969/j.issn.1001-1935.2016.03.004

      曹亞平, 鄢文, 李楠. Si-SiC復合粉添加量對低碳鎂碳耐火材料性能的影響. 耐火材料, 2016, 50(3): 170 doi: 10.3969/j.issn.1001-1935.2016.03.004
      [47] Wang Z Q, Zhu B Q, Fang B X, et al. Effects of B4C and Si antioxidant on oxidation resistance of low-carbon MgO-C bricks. Refractories, 2008, 42(3): 161 doi: 10.3969/j.issn.1001-1935.2008.03.001

      王志強, 朱伯銓, 方斌祥, 等. B4C和Si組合抗氧化劑對低碳MgO-C磚抗氧化性能的影響. 耐火材料, 2008, 42(3): 161 doi: 10.3969/j.issn.1001-1935.2008.03.001
      [48] Zhang LF. Several important scientific research points of non-metallic inclusions in steel. Steelmaking, 2016, 32(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604002.htm

      張立峰. 鋼中非金屬夾雜物幾個需要深入研究的課題. 煉鋼, 2016, 32(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604002.htm
      [49] Gao M, Li Z Y, Wang T S, et al. Influence of sintered spinel fines on properties of corundum-spinel castables. Refractories, 2018, 52(1): 56 doi: 10.3969/j.issn.1001-1935.2018.01.014

      高梅, 李朝云, 王團收, 等. 燒結尖晶石細粉加入量對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2018, 52(1): 56 doi: 10.3969/j.issn.1001-1935.2018.01.014
      [50] Wu Y S, Ren L, Wang T S, et al. Effect of silica micro-powder on thermal shock resistance of cement-free corundum-spinel castables//Proceedings of the 13th National Conference on Unshaped Refractory Materials and the 2015 Academic Conference on Refractory Materials. Qingda, 2015: 22

      吳永生, 任林, 王團收, 等. 二氧化硅微粉對無水泥剛玉-尖晶石澆注料抗熱震性能的影響//第十三屆全國不定形耐火材料學術會議和2015耐火原料學術交流會. 青島, 2015: 22
      [51] Yao J F, Zhang E F, Tian S X. Influence of ultrafine α-Al2O3 on properties of corundum spinel castables. Refractories, 2008, 42(3): 209 doi: 10.3969/j.issn.1001-1935.2008.03.012

      姚金甫, 張恩甫, 田守信. α-Al2O3微粉對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2008, 42(3): 209 doi: 10.3969/j.issn.1001-1935.2008.03.012
      [52] Lian W K, Tang B J, Wei J C, et al. Effects of ZrO2 micropowder addition on performances of corundum spinel castables. Refractories, 2018, 52(4): 250 doi: 10.3969/j.issn.1001-1935.2018.04.003

      連偉康, 唐冰杰, 魏軍從, 等. ZrO2微粉加入量對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2018, 52(4): 250 doi: 10.3969/j.issn.1001-1935.2018.04.003
      [53] Li Z G, Ye F B. Effect of nano calcium carbonate on properties of corundum-spinel castables. Refractories, 2012, 46(6): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201206003.htm

      李志剛, 葉方保. 加入納米碳酸鈣對剛玉-尖晶石質澆注料性能的影響. 耐火材料, 2012, 46(6): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201206003.htm
      [54] Jia Q L, Ye F B, Zhong X C. Effect of TiO2 addition on properties of corundum spinel castables. Refractories, 2009, 43(6): 417 doi: 10.3969/j.issn.1001-1935.2009.06.005

      賈全利, 葉方保, 鐘香崇. TiO2加入量對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2009, 43(6): 417 doi: 10.3969/j.issn.1001-1935.2009.06.005
      [55] Zhang D J, Wang H X. Corrosion behavior of refining slags with different basicities to corundum-spinel castable. Refractories, 2002, 36(4): 215 doi: 10.3969/j.issn.1001-1935.2002.04.010

      張殿軍, 王會先. 不同堿度的精煉渣對剛玉-尖晶石澆注料的侵蝕行為. 耐火材料, 2002, 36(4): 215 doi: 10.3969/j.issn.1001-1935.2002.04.010
      [56] Jia Q L, Ye F B, Zhong X C. Effects of cement addition on the slag resistance of alumina-spinel castables. J Zhengzhou Univ Eng Sci, 2011, 32(1): 43 doi: 10.3969/j.issn.1671-6833.2011.01.011

      賈全利, 葉方保, 鐘香崇. 水泥對剛玉-尖晶石澆注料抗侵蝕性影響研究. 鄭州大學學報(工學版), 2011, 32(1): 43 doi: 10.3969/j.issn.1671-6833.2011.01.011
      [57] Gao J Y, Zhou B Y, Bruno T, et al. Effect of CMA72 addition on the properties of corundum-spinel castables//Proceedings of the 15th National Refractory Youth Academic Conference. Yangzhou, 2016: 231

      郜劍英, 周寶余, Bruno Touzo, 等. CMA72加入量對剛玉-尖晶石澆注料性能的影響//第十五屆全國耐火材料青年學術報告會論文集. 揚州, 2016: 231
      [58] Ke C M, Li N, Mo J N. Contribution of lime based tundish working lining to clean steel making//Proceedings of 38th Annual Conference of Metallurgists of CIM-Advances in Refractories for the Metallurgical Industries. Quebec, 1999: 177
      [59] Wei Y W, Li N. Refractories for clean steel making. Am Ceram Soc Bull, 2002, 81(5): 32 http://www.researchgate.net/publication/291878532_Refractories_for_clean_steel_making
      [60] 北村. タアグネツアの水化特性. Taikabutsu, 1996, 48(3): 112
      [61] Shi H S, Zhao Y J, Li W W. Effects of temperature on the hydration characteristics of free lime. Cem Concr Res, 2002, 32(5): 789 doi: 10.1016/S0008-8846(02)00714-7
      [62] Hou D Z, Zhang W J, Gu H Z, et al. Hydration resistance of MgO-CaO clinker treated by polyphosphate. Refractories, 2002, 36(1): 16 doi: 10.3969/j.issn.1001-1935.2002.01.005

      侯冬枝, 張文杰, 顧華志, 等. 聚磷酸鹽表面處理鎂鈣砂的抗水化性能. 耐火材料, 2002, 36(1): 16 doi: 10.3969/j.issn.1001-1935.2002.01.005
      [63] Ghosh A, Tripathi H S. Sintering behaviour and hydration resistance of reactive dolomite. Ceram Int, 2012, 38(2): 1315 doi: 10.1016/j.ceramint.2011.09.005
      [64] Lin B Y, Wu Q S. Refractory Mineral Material. Beijing: Metallurgical Industry Press, 1989

      林彬蔭, 吳清順. 耐火礦物原料. 北京: 冶金工業出版社, 1989
      [65] Chen M, Lu C Y, Yu J K. Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J Eur CeramSoc, 2007, 27(16): 4633 doi: 10.1016/j.jeurceramsoc.2007.04.001
      [66] Chen K X, Chen Z Y. Effects of mixed rare earth oxides and Fe 2 O3 on the sintering properties and anti-hydration properties of dolomite. Refractories, 1992, 26(4): 187

      陳開獻, 陳肇友. 混合稀土氧化物與Fe2O3對白云石燒結性能和抗水化性能的影響. 耐火材料, 1992, 26(4): 187
      [67] Zhong X C. Looking ahead a new generation of high performance refractory ceramics. Refractories, 2003, 37(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL200301000.htm

      鐘香崇. 展望新一代優質高效耐火材料. 耐火材料, 2003, 37(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL200301000.htm
      [68] Chen Z Y, Tian S X. Relationship between clean steel and refractories. Refractories, 2004, 38(4): 219 doi: 10.3969/j.issn.1001-1935.2004.04.001

      陳肇友, 田守信. 耐火材料與潔凈鋼的關系. 耐火材料, 2004, 38(4): 219 doi: 10.3969/j.issn.1001-1935.2004.04.001
      [69] Bannenberg N. Demands on refractory material for clean steel production//Proceedings of Unified International Technical Conference on Refractories. Kyoto, 1995
      [70] Xu Y. The improvement of anti-erosion performance of magnesium-chrome refractories via adding nanoparticles. Refract Lime, 2015, 40(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-GWLH201504018.htm

      徐勇. 添加納米顆粒對鎂鉻耐火材料抗侵蝕性能的改善. 耐火與石灰, 2015, 40(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-GWLH201504018.htm
      [71] Zhu H X, Deng C J, Bai C, et al. Grain close packing model of refractory with continuous particle size distribution. J Wuhan Univ Sci Technol Nat Sci Ed, 2008, 31(2): 159 doi: 10.3969/j.issn.1674-3644.2008.02.012

      祝洪喜, 鄧承繼, 白晨, 等. 耐火材料連續顆粒分布的緊密堆積模型. 武漢科技大學學報(自然科學版), 2008, 31(2): 159 doi: 10.3969/j.issn.1674-3644.2008.02.012
      [72] Ye C. Investigation on Interaction between MgO-Al2O3 Refractory and Molten Steel in Refining Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2008

      葉超. 鎂鋁質鋼包精煉用耐火材料與鋼液相互作用的基礎研究[學位論文]. 北京: 北京科技大學, 2008
      [73] Chen J H, Chen H Y, Mi W J, et al. Substitution of Ba for Ca in the structure of CaAl12O19. J Am Ceram Soc, 2017, 100(1): 413 doi: 10.1111/jace.14482
      [74] Chen J H, Chen H Y, Mi W J, et al. Synthesis of CaO·2MgO·8Al2O3(CM2A8) and its slag resistance mechanism. J Eur Ceram Soc, 2017, 37(4): 1799 doi: 10.1016/j.jeurceramsoc.2016.11.018
    • 加載中
    圖(8)
    計量
    • 文章訪問數:  1312
    • HTML全文瀏覽量:  597
    • PDF下載量:  85
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-10-06
    • 刊出日期:  2019-06-01

    目錄

      /

      返回文章
      返回