• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    超低碳鋼精煉過程中Fe-Al-Ti-O類復合氧化物夾雜的演變與控制

    顧超 趙立華 甘鵬

    顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe-Al-Ti-O類復合氧化物夾雜的演變與控制[J]. 工程科學學報, 2019, 41(6): 757-762. doi: 10.13374/j.issn2095-9389.2019.06.007
    引用本文: 顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe-Al-Ti-O類復合氧化物夾雜的演變與控制[J]. 工程科學學報, 2019, 41(6): 757-762. doi: 10.13374/j.issn2095-9389.2019.06.007
    GU Chao, ZHAO Li-hua, GAN Peng. Revolution and control of Fe-Al-Ti-O complex oxide inclusions in ultralow-carbon steel during refining process[J]. Chinese Journal of Engineering, 2019, 41(6): 757-762. doi: 10.13374/j.issn2095-9389.2019.06.007
    Citation: GU Chao, ZHAO Li-hua, GAN Peng. Revolution and control of Fe-Al-Ti-O complex oxide inclusions in ultralow-carbon steel during refining process[J]. Chinese Journal of Engineering, 2019, 41(6): 757-762. doi: 10.13374/j.issn2095-9389.2019.06.007

    超低碳鋼精煉過程中Fe-Al-Ti-O類復合氧化物夾雜的演變與控制

    doi: 10.13374/j.issn2095-9389.2019.06.007
    基金項目: 

    國家自然科學基金資助項目 5157419

    詳細信息
      通訊作者:

      趙立華, E-mail: 15210951549@sina.cn

    • 中圖分類號: TF769.2

    Revolution and control of Fe-Al-Ti-O complex oxide inclusions in ultralow-carbon steel during refining process

    More Information
    • 摘要: 超低碳鋼是一種重要的汽車用鋼材料, 鋼中通常添加鈦元素, 使其形成析出物, 提高鋼材的深沖性.然而鈦元素作為一種脫氧能力較強的元素, 進入鋼液中通常首先形成氧化物.為了減少含鈦氧化物夾雜的生成, 基于"轉爐-RH-連鑄"的超低碳鋼生產流程, 對RH精煉過程進行系統取樣, 分析了鋁脫氧劑加入后及合金化元素鈦加入后的氧、氮氣體含量變化及夾雜物特征變化, 并使用FactSage熱力學計算軟件對Fe-Al-Ti-O夾雜物穩定相圖進行計算.研究結果顯示, 含鈦類氧化物夾雜通常以Al2O3類夾雜物作為形核質點, 對其形成包裹狀夾雜物.若避免含Ti夾雜物的生成, 當鋼中Ti質量分數為0.1%時, 鋼中溶解Al質量分數應在0.01%以上.對含鈦氧化物的生成及長大流程進行研究, 通過對Al2O3夾雜物及Ti2O3夾雜物粗化率的計算及附著功的比較可知, Ti2O3夾雜物在1600℃時的熟化生長速率較Al2O3較大且Ti2O3夾雜物與Al2O3夾雜物相比不容易相互碰撞融合并從鋼液中去除.若提高精煉過程中的氧化物夾雜物去除率, 應嚴格控制含鈦氧化物類夾雜物的生成.

       

    • 圖  1  加料及取樣示意圖

      Figure  1.  Schematic of charging and taking specimens

      圖  2  RH精煉過程中氣體含量變化: (a) 全氧; (b) 氮質量分數

      Figure  2.  Variation of the gas content during RH refining: (a) total oxygen content; (b) nitrogen content

      圖  3  RH精煉過程中氧化物夾雜物數量及尺寸特征變化

      Figure  3.  Variation of the amount and size characterization of oxide in-clusions during RH refining

      圖  4  RH精煉過程中氧化物類夾雜物的典型形貌. (a) RH進站; (b) 加Al后; (c) 加Ti后

      Figure  4.  Typical morphologies of oxide inclusions during RH refining: (a) beginning of RH; (b) after Al addition; (c) after Ti addition

      圖  5  Fe-Al-Ti-O夾雜物平衡相圖(1600℃)

      Figure  5.  Inclusion stability diagram of the Fe-Al-Ti-O system at 1600℃

      圖  6  超低碳鋼中典型氧化物類夾雜物形貌的演變機理

      Figure  6.  Revolution mechanism of typical oxide inclusions in ultralow-carbon steels

      圖  7  Al2O3及Ti2O3夾雜物粗化率變化

      Figure  7.  Variation of kdof Al2O3and Ti2O3inclusions with oxygen content

      圖  8  Al2O3及Ti2O3夾雜物的附著功(Wad) 比較

      Figure  8.  Comparison of the adhesion work (Wad) of Al2O3and Ti2O3inclusions

      表  1  目標超低碳鋼主要成分(質量分數)

      Table  1.   Main composition of the target steel ? %

      C Si Mn S P Al Ti Nb
      0. 002 0. 010 0. 100 0. 007 0. 015 0. 020 0. 020 0. 004
      下載: 導出CSV

      表  2  Al2O3及Ti2O3夾雜物的相關表面性質參數及V0

      Table  2.   Relative surface parameters and V0of Al2O3and Ti2O3inclu-sions

      夾雜物種類 γSV/(J·m-2) θ /(°) V0 /(m3·mol-1)
      Al2O3 0. 94[14] 144[15] 8. 6 × 10-6
      Ti2O3 1. 61[16] 122[16]1. 13 × 10-5
      下載: 導出CSV
      中文字幕在线观看
    • [1] Wang R, Bao Y P, Li Y H, et al. Effect of slag composition on steel cleanliness in interstitial-free steel. J Iron Steel Res Int, 2017, 24(6): 579 doi: 10.1016/S1006-706X(17)30088-2
      [2] Deng X X, Ji C X, Guan S K, et al. Inclusion behaviour in aluminium-killed steel during continuous casting. Ironmaking Steelmaking, 2018: 1 doi: 10.1080/03019233.2018.1428420
      [3] Yu H X, Ji C X, Chen B, et al. Characteristics and evolution of inclusion induced surface defects of cold rolled IF sheet. J Iron Steel Res Int, 2015, 22(Suppl1): 17
      [4] Zhao Z S, Mao W M, Yu Y N, et al. Effect of Ti on precipitation of second phase particals and mechanical properties of high strength IF steel. Iron Steel, 2000, 35(9): 47 doi: 10.3321/j.issn:0449-749X.2000.09.014

      趙子蘇, 毛衛民, 余永寧, 等. 鈦對高強IF鋼第二相粒子析出規律和力學性能的影響. 鋼鐵, 2000, 35(9): 47 doi: 10.3321/j.issn:0449-749X.2000.09.014
      [5] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
      [6] Sui Y F, Sun G D, Zhao Y, et al. Evolution of titaniferous inclusions in IF steelmaking. J Univ Sci Technol Beijing, 2014, 36(9): 1174 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409007.htm

      隋亞飛, 孫國棟, 趙艷, 等. IF鋼中含Ti夾雜物的衍變規律. 北京科技大學學報, 2014, 36(9): 1174 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409007.htm
      [7] Qin Y M, Wang X H, Huang F X, et al. Influence of reoxidation by slag and air on inclusions in IF steel. Metall Res Technol, 2015, 112(4): 405 doi: 10.1051/metal/2015025
      [8] Tsunekawa H, Yamashita T, Aoyama T, et al. Mechanism of formation of streak-shaped defects on ultra-low carbon IF steel for automobile outer panels after press forming and influence of slab reheating temperature before hot rolling and Sb-addition on defects. Tetsu-to-Hagane, 2016, 102(4): 202 doi: 10.2355/tetsutohagane.TETSU-2015-061
      [9] Gutiérrez E, Garcia-Hernandez S, de Jesús Barreto J. Mathematical analysis of the dynamic effects on the deposition of alumina inclusions inside the upper tundish nozzle. ISIJ Int, 2016, 56(8): 1394 doi: 10.2355/isijinternational.ISIJINT-2016-076
      [10] Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8
      [11] Chase Jr M W, Curnutt J L, McDonald R A, et al. JANAF thermochemical tables, 1978 supplement. J Phys Chem Ref Data, 1978, 7(3): 793 doi: 10.1063/1.555580
      [12] Kubaschewski O, Dench W A. The free-energy diagram of the system titanium-oxygen. J Inst Met, 1953: 82 http://ci.nii.ac.jp/naid/10009581664
      [13] Nakajima K. Estimation of interfacial tensions between phases in the molten iron-slag-inclusion (alumina) system. Tetsu-toHagane, 1994, 80(5): 383 doi: 10.2355/tetsutohagane1955.80.5_383
      [14] Zhao L Y, Sahajwalla V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron. ISIJ Int, 2003, 43(1): 1 doi: 10.2355/isijinternational.43.1
      [15] Yang G W, Wang X H, Huang F X, et al. Transient Inclusion Evolution during RH Degassing. Steel Res Int, 2014, 85(1): 26 doi: 10.1002/srin.201300030
      [16] Xuan C J, Shibata H, Sukenaga S, et al. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int, 2015, 55(9): 1882 doi: 10.2355/isijinternational.ISIJINT-2014-820
      [17] Yang G W, Wang X H, Huang F X, et al. Transient inclusion evolution during RH degassing. Steel Res Int, 2014, 85(1): 26 doi: 10.1002/srin.201300030
    • 加載中
    圖(8) / 表(2)
    計量
    • 文章訪問數:  1057
    • HTML全文瀏覽量:  440
    • PDF下載量:  45
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-12-20
    • 刊出日期:  2019-06-01

    目錄

      /

      返回文章
      返回