• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    熱變形及熱處理過程中TC17鈦合金組織與取向的關聯性

    原菁駿 姬忠碩 張麥倉

    原菁駿, 姬忠碩, 張麥倉. 熱變形及熱處理過程中TC17鈦合金組織與取向的關聯性[J]. 工程科學學報, 2019, 41(6): 772-780. doi: 10.13374/j.issn2095-9389.2019.06.009
    引用本文: 原菁駿, 姬忠碩, 張麥倉. 熱變形及熱處理過程中TC17鈦合金組織與取向的關聯性[J]. 工程科學學報, 2019, 41(6): 772-780. doi: 10.13374/j.issn2095-9389.2019.06.009
    YUAN Jing-jun, JI Zhong-shuo, ZHANG Mai-cang. Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment[J]. Chinese Journal of Engineering, 2019, 41(6): 772-780. doi: 10.13374/j.issn2095-9389.2019.06.009
    Citation: YUAN Jing-jun, JI Zhong-shuo, ZHANG Mai-cang. Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment[J]. Chinese Journal of Engineering, 2019, 41(6): 772-780. doi: 10.13374/j.issn2095-9389.2019.06.009

    熱變形及熱處理過程中TC17鈦合金組織與取向的關聯性

    doi: 10.13374/j.issn2095-9389.2019.06.009
    詳細信息
      通訊作者:

      張麥倉, E-mail: mczhang@ustb.edu.cn

    • 中圖分類號: TG146.2

    Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment

    More Information
    • 摘要: 為了進一步研究熱壓縮及熱處理過程對組織及取向變化的關聯性, 通過對TC17進行熱壓縮變形及后續熱處理, 利用光學顯微鏡和背散射電子衍射等分析方法, 結合晶粒尺寸、織構分布圖、極圖以及反極圖, 研究變形后及熱處理后的TC17的組織結構、晶粒尺寸的變化和取向的演變規律以及兩者之間的關聯性.結果表明: 隨著變形溫度升高, 初生α相含量大幅減小, 尺寸減小, 大部分α相晶粒分散分布, 且位于高溫β相晶粒的三叉晶界上; 熱處理后, α相和β相組織特征清晰, 界限明顯, 初生α相依舊存在, 且趨于等軸化, 亞穩定β相發生轉變, 形成片層狀β轉變組織; 熱變形使α相織構極密度值減小, 且隨之溫度增加, α相織構極密度值也變小; 熱變形后的α相已不存在明顯的強織構, 熱變形對α相晶粒的取向影響較大, 很明顯的改善了其取向的均勻性; 熱變形同樣使β相織構極密度值減小, 但效果不明顯.β相仍存在取向集中現象, 取向均勻性相對較差.

       

    • 圖  1  雙相鈦合金TC17的原始組織

      Figure  1.  Original microstructure of TC17 alloy

      圖  2  TC17合金在不同溫度下0.01 s-1熱壓縮變形組織. (a) 840℃; (b) 860℃; (c) 880℃

      Figure  2.  Microstructure of the TC17 alloy hot compressed at 0.01 s-1and different temperatures: (a) 840℃, (b) 860℃, (c) 880℃

      圖  3  TC17合金在860℃下不同應變速率下熱壓縮變形組織. (a) 0.01 s-1; (b) 0.1 s-1; (c) 1 s-1

      Figure  3.  Microstructure of the TC17 alloy hot compressed at 860℃and different strain rates: (a) 0.01 s-1, (b) 0.1 s-1, (c) 1 s-1

      圖  4  TC17合金熱處理后的微觀組織. (a) 840℃, 0.1 s-1; (b) 860℃, 0.1 s-1; (c) 880℃, 0.1 s-1; (d) 860℃, 0.01 s-1; (e) 860℃, 1 s-1

      Figure  4.  Microstructure of the TC17 alloy heat treated at different conditions: (a) 840℃, 0.1 s-1; (b) 860℃, 0.1 s-1; (c) 880℃, 0.1 s-1; (d) 860℃, 0.01 s-1; (e) 860℃, 1 s-1

      圖  5  熱變形前后TC17合金α相的取向分布. (a) 熱壓縮前; (b) 860℃, 0.01 s-1; (c) 840℃, 0.1 s-1; (d) 860℃, 0.1 s-1; (e) 880℃, 0.1 s-1; (f) 860℃, 1 s-1

      Figure  5.  αphase orientation distribution of the TC17 alloy before and after hot compression: (a) before hot compression; (b) 860℃, 0.01 s-1; (c) 840℃, 0.1 s-1; (d) 860℃, 0.1 s-1; (e) 880℃, 0.1 s-1; (f) 860℃, 1 s-1

      圖  6  熱變形前后TC17合金β相的取向分布. (a) 熱壓縮前; (b) 860℃, 0.01 s-1; (c) 840℃, 0.1 s-1; (d) 860℃, 0.1 s-1; (e) 880℃, 0.1 s-1, (f) 860℃, 1 s-1

      Figure  6.  β-phase orientation distribution of the alloy before and after hot compression: (a) before hot compression; (b) 860℃, 0.01 s-1; (c) 840℃, 0.1 s-1; (d) 860℃, 0.1 s-1; (e) 880℃, 0.1 s-1; (f) 860℃, 1 s-1

      圖  7  TC17合金在0.1 s-1應變速率不同溫度下變形后經熱處理的β相的取向分布圖. (a) 840℃; (b) 860℃; (c) 880℃

      Figure  7.  IPF diagram of theβphase of TC17 alloy after deformation at different temperatures of 0.1 s-1strain rate: (a) 840℃; (b) 860℃; (c) 880℃

      圖  8  TC17合金在0.1 s-1應變速率不同溫度下變形的α相的極圖. (a) 840℃; (b) 860℃; (c) 880℃

      Figure  8.  Electrode diagram of theαphase of TC17 alloy deformed at different temperatures and 0.1 s-1strain rate: (a) 840℃; (b) 860℃; (c) 880℃

      圖  9  TC17合金在0.1 s-1應變速率不同溫度下變形的β相的極圖. (a) 840℃; (b) 860℃; (c) 880℃

      Figure  9.  Polar diagram of theβphase of TC17 alloy at different temperatures at 0.1 s-1strain rate: (a) 840℃; (b) 860℃; (c) 880℃

      圖  10  TC17合金熱處理過程中次生α相與β相的取向關系

      Figure  10.  Orientation of secondary phase and spur phase in the TC17 alloy heat treatment process

      表  1  TC17合金的主要化學成分(質量分數)

      Table  1.   Main chemical compositions of TC17 alloy ?%

      Al Cr Mo Sn Zr Fe C Si H O Ti
      5.02 3.93 3.88 2.37 1.95 0.05 0.01 0.003 0.12 余量
      下載: 導出CSV
      中文字幕在线观看
    • [1] Zhang K, Yang K V, Lim S, et al. Effect of the presence of macrozones on short crack propagation in forged two-phase titanium alloys. Int J Fatigue, 2017, 104: 1 doi: 10.1016/j.ijfatigue.2017.07.002
      [2] Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure. Acta Mater, 2001, 49(17): 3565 doi: 10.1016/S1359-6454(01)00236-1
      [3] Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys. Chin J Rare Met, 2008, 32(6): 774 doi: 10.3969/j.issn.0258-7076.2008.06.020

      許國棟, 王鳳娥. 高溫鈦合金的發展和應用. 稀有金屬, 2008, 32(6): 774 doi: 10.3969/j.issn.0258-7076.2008.06.020
      [4] Ma S J, Wu X R, Liu J Z, et al. Influence of microstructures on mechanical properties for TC21 titanium alloy. J Aeron Mater, 2006, 26(5): 22 doi: 10.3969/j.issn.1005-5053.2006.05.006

      馬少俊, 吳學仁, 劉建中, 等. TC21鈦合金的微觀組織對力學性能的影響. 航空材料學報, 2006, 26(5): 22 doi: 10.3969/j.issn.1005-5053.2006.05.006
      [5] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V. Metall Mater Trans A, 2003, 34(10): 2377 doi: 10.1007/s11661-003-0300-0
      [6] Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanst?tten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Mater, 2007, 55(20): 6765 doi: 10.1016/j.actamat.2007.08.029
      [7] Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V. Acta Mater, 2004, 52(17): 5215 doi: 10.1016/j.actamat.2004.07.034
      [8] Poorganji B, Yamaguchi M, Itsumi Y, et al. Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region. Scripta Mater, 2009, 61(4): 419 doi: 10.1016/j.scriptamat.2009.04.033
      [9] He D, Zhu J C, Lai Z H, et al. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti-6Al-2Zr-1Mo-1V alloy. Mater Des, 2013, 46: 38 doi: 10.1016/j.matdes.2012.09.045
      [10] Sun J Z, Li M Q, Li H. Interaction effect between alpha and beta phases based on dynamic recrystallization of isothermally compressed Ti-5Al-2Sn-2Zr-4Mo-4Cr with basketweave microstructure. J Alloys Compd, 2017, 692: 403 doi: 10.1016/j.jallcom.2016.09.065
      [11] Srinivasan S G, Cahn J W, Jónsson H, et al. Excess energy of grain-boundary trijunctions: an atomistic simulation study. Acta Mater, 1999, 47(9): 2821 doi: 10.1016/S1359-6454(99)00120-2
      [12] Li L, Luo J, Yan J J, et al. Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression. J Alloys Compd, 2015, 622: 174 doi: 10.1016/j.jallcom.2014.10.043
      [13] Li H M, Li M Q, Luo J, et al. Microstructure and mechanical properties of heat-treated Ti-5Al-2Sn-2Zr-4Mo-4Cr. Trans Nonferrous Met Soc China, 2015, 25(9): 2893 doi: 10.1016/S1003-6326(15)63915-2
      [14] Teixeira J D C, Appolaire B, Aeby-Gautier E, et al. Transformation kinetics and microstructures of Ti17 titanium alloy during continuous cooling. Mater Sci Eng A, 2007, 448(1-2): 135 doi: 10.1016/j.msea.2006.10.024
      [15] Tarín P, Fernández A L, Simón A G, et al. Transformations in the Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy and mechanical and microstructural characteristics. Mater Sci Eng A, 2006, 438-440: 364 doi: 10.1016/j.msea.2006.02.183
      [16] Karthikeyan T, Dasgupta A, Khatirkar R, et al. Effect of cooling rate on transformation texture and variant selection during β→α transformation in Ti-5Ta-1.8Nb alloy. Mater Sci Eng A, 2010, 528(2): 549 doi: 10.1016/j.msea.2010.09.055
      [17] Xu J W, Zeng W D, Jia Z Q, et al. Microstructure coarsening behavior of Ti-17 alloy with equiaxed alpha during heat treatment. J Alloys Compd, 2015, 618: 343 doi: 10.1016/j.jallcom.2014.08.223
      [18] Park C H, Kim J H, Hyun Y T, et al. The origins of flow softening during high-temperature deformation of a Ti-6Al-4V alloy with a lamellar microstructure. J Alloys Compd, 2014, 582: 126 doi: 10.1016/j.jallcom.2013.08.041
      [19] Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review. Master Sci Eng A, 1997, 238(2): 219 doi: 10.1016/S0921-5093(97)00424-3
      [20] Mackenzie L W F, Pekguleryuz M O. The recrystallization and texture of magnesium-zine-cerium alloy. Scripta Mater, 2008, 59(6): 665 doi: 10.1016/j.scriptamat.2008.05.021
      [21] Suwas S, Beausir B, Toth L S, et al. Texture evolution in commercially pure titanium atter warm equal channel angular extrusion. Acta Mater, 2011, 59(3): 1121 doi: 10.1016/j.actamat.2010.10.045
      [22] Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy. Acta Mater, 2013, 61(10): 3758 doi: 10.1016/j.actamat.2013.03.007
      [23] van Bohemen S M C, Kamp A, Petrov R H, et al. Nucleation and variant selection of secondary α plates in a β Ti alloy. Acta Mater, 2008, 56(20): 5907 doi: 10.1016/j.actamat.2008.08.016
    • 加載中
    圖(10) / 表(1)
    計量
    • 文章訪問數:  865
    • HTML全文瀏覽量:  380
    • PDF下載量:  16
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-11-05
    • 刊出日期:  2019-06-01

    目錄

      /

      返回文章
      返回