• 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    不同彈性模量的基臺-種植體組合對周圍成骨性能的影響

    林逸凌 邢輝 董安平 佘歡 杜大帆 許浩 汪東紅 黃海軍 疏達 祝國梁 孫寶德

    林逸凌, 邢輝, 董安平, 佘歡, 杜大帆, 許浩, 汪東紅, 黃海軍, 疏達, 祝國梁, 孫寶德. 不同彈性模量的基臺-種植體組合對周圍成骨性能的影響[J]. 工程科學學報, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
    引用本文: 林逸凌, 邢輝, 董安平, 佘歡, 杜大帆, 許浩, 汪東紅, 黃海軍, 疏達, 祝國梁, 孫寶德. 不同彈性模量的基臺-種植體組合對周圍成骨性能的影響[J]. 工程科學學報, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
    LIN Yi-ling, XING Hui, DONG An-ping, SHE Huan, DU Da-fan, XU Hao, WANG Dong-hong, HUANG Haijun, SHU Da, ZHU Guo-liang, SUN Bao-de. Effects of abutment-implant combinations with different elastic moduli on osteogenic performance[J]. Chinese Journal of Engineering, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
    Citation: LIN Yi-ling, XING Hui, DONG An-ping, SHE Huan, DU Da-fan, XU Hao, WANG Dong-hong, HUANG Haijun, SHU Da, ZHU Guo-liang, SUN Bao-de. Effects of abutment-implant combinations with different elastic moduli on osteogenic performance[J]. Chinese Journal of Engineering, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010

    不同彈性模量的基臺-種植體組合對周圍成骨性能的影響

    doi: 10.13374/j.issn2095-9389.2019.06.010
    基金項目: 

    國家自然科學基金資助項目 51831011

    國家自然科學基金資助項目 51871152

    詳細信息
      通訊作者:

      DONG An-ping, E-mail: apdong@sjtu.edu.cn

    • 中圖分類號: TG146.2

    Effects of abutment-implant combinations with different elastic moduli on osteogenic performance

    • 摘要: 利用有限元分析軟件計算了不同靜力作用下的多種基臺-種植體周圍骨組織的應力分布.模擬結果顯示, 基臺-種植體組合中Ti6Al4V鈦合金-聚醚醚酮(TC4-PEEK)相對于其他實驗組其應力集中程度現象可以有效降低, 周圍骨組織的應力分布較為均勻, 最大應力值為40~60 MPa.在軸向加載條件下, 不同基臺-種植體系統中PEEK種植體的應力水平較小, 而周圍骨組織應力水平較大; 在斜向45°加載條件下, 相對于其他兩種基臺-種植體系統, TC4-PEEK的應力水平更低, 其周圍骨組織中的皮質骨承受的最大應力值為55 MPa, 松質骨承受的最大應力值為5 MPa, 綜合來看的應力水平最小, 有助于骨沉積和成骨量增加, 從而有效提高種植體的界面穩定性.

       

    • 圖  1  種植牙-支撐骨組織(a)、三維幾何模型(b) 及內部構造(c)

      Figure  1.  Dental implant-supporting bone tissue (a), three-dimensional geometric model (b) and its internal structure (c)

      圖  2  支撐骨組織模型(a)、(b) 和牙種植體模型(c) (單位: mm)

      Figure  2.  Supporting bone tissue model (a) and (b) and dental implant model (c) (unit: mm)

      圖  3  種植牙-支撐骨組織模型網格劃分情況

      Figure  3.  Mesh distribution of the dental implant-supporting bone tis-sue model

      圖  4  種植體的兩種靜力加載條件

      Figure  4.  Two types of loading conditions of the dental implant

      圖  5  軸向加載和斜向加載不同種植體組合的應力分布云圖. (a, d) A; (b, e) B; (c, f) C

      Figure  5.  Stress distribution of dental implant under axial and oblique loading for different abutment-implant systems: (a, d) A; (b, e) B; (c, f) C

      圖  6  軸向加載和斜向加載不同種植體組合周圍骨應力分布云圖. (a, b) A; (c, d) B; (e, f) C

      Figure  6.  Stress distribution of the surrounding bone tissue under axial and oblique loading for different abutment-implant systems: (a, b) A; (c, d) B; (e, f) C

      圖  7  軸向(a) 與斜向(b) 加載不同類型基臺-種植體及周圍骨最大應力對比

      Figure  7.  Comparison of the maximum stresses of different types of abutment-implants and the surrounding bone tissue under axial (a) and oblique (b) loading

      表  1  種植牙-支撐骨組織模型各部分接觸類型

      Table  1.   Contact type of each part of the dental implant-supporting bone tissue model

      連接對 接觸類型
      基臺/中央螺絲 綁定
      基臺/種植體 摩擦接觸
      中央螺絲/種植體 摩擦接觸
      種植體/周圍骨組織 綁定
      皮質骨/松質骨 綁定(Tie)
      下載: 導出CSV

      表  2  種植牙-支撐骨模型各部分材料屬性

      Table  2.   Material properties of each part of the implant-support bone model

      材料 彈性模量,E /MPa 泊松比,v
      鈦合金TC4 110000 0.33
      PEEK 4100 0.40
      皮質骨 13400 0.30
      松質骨 1370 0.31
      下載: 導出CSV

      表  3  種植牙各部件的材料類型

      Table  3.   Material type of each part of the dental implant

      試樣組合 基臺 中央螺絲 種植體
      A TC4 TC4 TC4
      B PEEK PEEK PEEK
      C TC4 TC4 PEEK
      下載: 導出CSV

      表  4  軸向靜力加載100 N種植體的最大應力值

      Table  4.   Maximum stress value of implants with axial load of 100 N ?MPa

      試樣組和 基臺 種植體 皮質骨 松質骨
      A 24 24 8 3
      B 21 8 10 3
      C 22 9 13 3
      下載: 導出CSV

      表  5  斜向靜力加載100 N種植體的最大應力值

      Table  5.   Maximum stress value of implants with oblique load of 100 N ?MPa

      試樣組和 基臺 種植體 皮質骨 松質骨
      A 100 117 74 12
      B 84 20 120 5
      C 88 11 55 5
      下載: 導出CSV
      中文字幕在线观看
    • [1] Oh T J, Yoon J, Misch C E, et al. The causes of early implant bone loss: myth or science? J Periodontol, 2002, 73(3): 322 doi: 10.1902/jop.2002.73.3.322
      [2] Lin Y. Current dental implant design and its clinical importance. West China J Stomatol, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm

      林野. 當代牙種植體設計進步與臨床意義. 華西口腔醫學雜志, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm
      [3] Guan H L, Van Staden R C, Loo Y C, et al. Evaluation of multiple implant bone parameters on stress characteristics in the mandible under traumatic loading conditions. Int J Oral Maxillofac Impl, 2010, 25(3): 461 http://www.ncbi.nlm.nih.gov/pubmed/20556244
      [4] Pérez-Pevida E, Brizuela-Velasco A, Chávarri-Prado D, et al. Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. BioMed Res Int, 2016, 2016: 1850401 http://downloads.hindawi.com/journals/bmri/aip/1850401.pdf
      [5] Lin C L, Chang S H, Wang J C. Finite element analysis of biomechanical interactions of a tooth-implant splinting system for various bone qualities. Chang Gung Med J, 2006, 29(2): 143 http://europepmc.org/abstract/med/16767962
      [6] Schwitalla A D, Abou-Emara M, Spintig T, et al. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech, 2015, 48(1): 1 doi: 10.1016/j.jbiomech.2014.11.017
      [7] Lacefield W R. Material characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res, 1999, 13(1): 21 doi: 10.1177/08959374990130011001
      [8] Bodic F, Amouriq Y, Gayet-Delacroix M, et al. Relationships between bone mass and micro-architecture at the mandible and iliac bone in edentulous subjects: a dual X-ray absorptiometry, computerised tomography and microcomputed tomography study. Gerodontology, 2012, 29(2): e585 doi: 10.1111/j.1741-2358.2011.00527.x
      [9] Jaffee R I. The physical metallurgy of titanium alloys. Prog Met Phys, 1958, 7: 65 doi: 10.1016/0502-8205(58)90004-2
      [10] Macedo J P, Pereira J, Faria J, et al. Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. J Mech Behav Biomed Mater, 2017, 71: 441 doi: 10.1016/j.jmbbm.2017.03.011
      [11] Cook S D, Rust-Dawicki A M. Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol, 1995, 21(3): 176 http://europepmc.org/abstract/med/8699511
      [12] Corvelli A A, Biermann P J, Roberts J C. Design, analysis, and fabrication of a composite segmental bone replacement implant. J Adv Mater, 1997, 28(3): 2 http://www.researchgate.net/publication/288531057_Design_analysis_and_fabrication_of_a_composite_segmental_bone_replacement_implant
      [13] Kurtz S M, Devine J N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845 doi: 10.1016/j.biomaterials.2007.07.013
      [14] Han C M, Lee E J, Kim H E, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials, 2010, 31(13): 3465 doi: 10.1016/j.biomaterials.2009.12.030
      [15] Strecha J, Jurkovic R, Siebert T, et al. Fixed bicortical screw and blade implants as a non-standard solution to an edentulous (toothless) mandible. Int J Oral Sci, 2010, 2: 105 doi: 10.4248/IJOS10030
      [16] Nissan J, Ghelfan O, Gross O, et al. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg, 2011, 69(7): 1934 doi: 10.1016/j.joms.2011.01.036
      [17] Wang M Q, He S G. Oral Anatomy and Physiology. 6th Ed. Beijing: People's Medical Publishing House, 2012

      王美青, 何三綱. 口腔解剖生理學. 6版. 北京: 人民衛生出版社, 2012
      [18] Frost H M. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthodontist, 2004, 74(1): 3 http://europepmc.org/abstract/med/15038485
      [19] Schwitalla A D, Spintig T, Kallage I, et al. Pressure behavior of different PEEK materials for dental implants. J Mech Behav Biomed Mater, 2016, 54: 295 doi: 10.1016/j.jmbbm.2015.10.003
      [20] Schwitalla A D, Spintig T, Kallage I, et al. Flexural behavior of PEEK materials for dental application. Dent Mater, 2015, 31(11): 1377 doi: 10.1016/j.dental.2015.08.151
      [21] Sampaio M, Buciumaeanu M, Henriques B, et al. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental application. J Mech Behav Biomed Mater, 2016, 60: 212 doi: 10.1016/j.jmbbm.2015.12.038
      [22] Watari F, Yokoyama A, Omori M, et al. Biocompatibility of materials and development to functionally graded implant for biomedical application. Compos Sci Technol, 2004, 64(6): 893 doi: 10.1016/j.compscitech.2003.09.005
    • 加載中
    圖(7) / 表(5)
    計量
    • 文章訪問數:  1234
    • HTML全文瀏覽量:  539
    • PDF下載量:  18
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2018-06-04
    • 刊出日期:  2019-06-01

    目錄

      /

      返回文章
      返回